Sanja A Mijatović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159819/publications.pdf

Version: 2024-02-01

90 papers 4,055 citations

31 h-index

147801

62 g-index

95 all docs 95 docs citations

95 times ranked 6817 citing authors

#	Article	IF	Citations
1	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	3.1	520
2	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509
3	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	1.8	279
4	Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response Oncotarget, 2012, 3, 954-987.	1.8	244
5	Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5, 4603-4650.	1.8	231
6	Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology, 2011, 226, 2762-2781.	4.1	147
7	On the Discovery, Biological Effects, and Use of Cisplatin and Metallocenes in Anticancer Chemotherapy. Bioinorganic Chemistry and Applications, 2012, 2012, 1-14.	4.1	115
8	Anti-glioma action of aloe emodin: the role of ERK inhibition. Cellular and Molecular Life Sciences, 2005, 62, 589-598.	5.4	85
9	Organotin(IV)â€Loaded Mesoporous Silica as a Biocompatible Strategy in Cancer Treatment. Angewandte Chemie - International Edition, 2014, 53, 5982-5987.	13.8	82
10	The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants, 2020, 9, 374.	5.1	72
11	Anticancer properties of the novel nitric oxide-donating compound (<i>S,R</i>)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide <i>in vitro</i> and <i>in vivo</i> Molecular Cancer Therapeutics, 2008, 7, 510-520.	4.1	68
12	Anticancer Properties of Ganoderma Lucidum Methanol Extracts In Vitro and In Vivo. Nutrition and Cancer, 2009, 61, 696-707.	2.0	67
13	Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: In vitro and in vivo study. Food and Chemical Toxicology, 2008, 46, 1825-1833.	3. 6	63
14	HIVâ€protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NOâ€hybridized derivatives?. International Journal of Cancer, 2017, 140, 1713-1726.	5.1	63
15	Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin. Cellular and Molecular Life Sciences, 2005, 62, 1275-1282.	5.4	59
16	Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacological Research, 2016, 105, 62-73.	7.1	58
17	Extracellular iron diminishes anticancer effects of vitamin C: An in vitro study. Scientific Reports, 2014, 4, 5955.	3.3	50
18	Strain difference in susceptibility to experimental autoimmune encephalomyelitis between Albino Oxford and Dark Agouti rats correlates with disparity in production of IL-17, but not nitric oxide. Journal of Neuroscience Research, 2006, 84, 379-388.	2.9	49

#	Article	IF	CITATIONS
19	Multiple antimelanoma potential of dry olive leaf extract. International Journal of Cancer, 2011, 128, 1955-1965.	5.1	48
20	Resistance to TRAIL and how to surmount it. Immunologic Research, 2012, 52, 157-168.	2.9	48
21	In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle, 2011, 10, 492-499.	2.6	47
22	Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth of melanoma cells in vitro and in vivo. Investigational New Drugs, 2019, 37, 1014-1028.	2.6	41
23	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
24	Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy. Current Pharmaceutical Design, 2012, 18, 1784-1795.	1.9	39
25	Aloe emodin inhibits the cytotoxic action of tumor necrosis factor. European Journal of Pharmacology, 2007, 568, 248-259.	3.5	38
26	The antitumor properties of a nontoxic, nitric oxide–modified version of saquinavir are independent of Akt. Molecular Cancer Therapeutics, 2009, 8, 1169-1178.	4.1	38
27	Cell-type dependent response of melanoma cells to aloe emodin. Food and Chemical Toxicology, 2012, 50, 3181-3189.	3.6	37
28	A Key Role of Autophagy in Osteoblast Differentiation on Titanium-Based Dental Implants. Cells Tissues Organs, 2014, 200, 265-277.	2.3	37
29	Anticancer and Differentiation Properties of the Nitric Oxide Derivative of Lopinavir in Human Glioblastoma Cells. Molecules, 2018, 23, 2463.	3.8	36
30	Platinum(ii/iv) complexes containing ethylenediamine-N,N′-di-2/3-propionate ester ligands induced caspase-dependent apoptosis in cisplatin-resistant colon cancer cells. Metallomics, 2012, 4, 979.	2.4	35
31	Antiproliferative activity of ruthenium(<scp>ii</scp>) arene complexes with mono- and bidentate pyridine-based ligands. Dalton Transactions, 2016, 45, 13114-13125.	3.3	34
32	Naturally occurring compounds in differentiation based therapy of cancer. Biotechnology Advances, 2018, 36, 1622-1632.	11.7	31
33	Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Materials Science and Engineering C, 2021, 124, 112078.	7.3	31
34	Cytotoxic and immune-sensitizing properties of nitric oxide-modified saquinavir in iNOS-positive human melanoma cells. Journal of Cellular Physiology, 2011, 226, 1803-1812.	4.1	30
35	Novel methylene modified cyclohexyl ethylenediamine-N,N′-diacetate ligands and their platinum(IV) complexes. Influence on biological activity. Journal of Inorganic Biochemistry, 2012, 109, 40-48.	3.5	29
36	Therapeutic Potential of Nitric Oxide-Modified Drugs in Colon Cancer Cells. Molecular Pharmacology, 2012, 82, 700-710.	2.3	28

#	Article	IF	CITATIONS
37	Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response. Journal of Inorganic Biochemistry, 2015, 153, 315-321.	3.5	27
38	Evaluation of functionalized mesoporous silica SBA-15 as a carrier system for Ph ₃ Sn(CH ₂) ₃ OH against the A2780 ovarian carcinoma cell line. Dalton Transactions, 2016, 45, 18984-18993.	3.3	27
39	Novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid–nitric oxide (GIT-27NO) induces p53 mediated apoptosis in human A375 melanoma cells. Nitric Oxide - Biology and Chemistry, 2008, 19, 177-183.	2.7	26
40	The NO-modified HIV protease inhibitor as a valuable drug for hematological malignancies: Role of p70S6K. Leukemia Research, 2015, 39, 1088-1095.	0.8	25
41	Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15. Nanomaterials, 2018, 8, 322.	4.1	25
42	Biological activity of neutral and cationic iridium(III) complexes with κP and κP,κS coordinated Ph2PCH2S(O)xPh (xÂ=Â0–2) ligands. European Journal of Medicinal Chemistry, 2013, 69, 216-222.	5.5	24
43	Membrane Fluidity, Invasiveness and Dynamic Phenotype of Metastatic Prostate Cancer Cells after Treatment with Soy Isoflavones. Journal of Membrane Biology, 2013, 246, 307-314.	2.1	22
44	Carboranyl Analogues of Celecoxib with Potent Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ChemMedChem, 2019, 14, 315-321.	3.2	20
45	Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells. Oncology Reports, 2012, 28, 682-688.	2.6	18
46	Senescence as a main mechanism of Ritonavir and Ritonavirâ€NO action against melanoma. Molecular Carcinogenesis, 2019, 58, 1362-1375.	2.7	18
47	Carboraneâ€Based Analogues of 5â€Lipoxygenase Inhibitors Coâ€inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem, 2019, 14, 255-261.	3.2	18
48	The interaction between SBA-15 derivative loaded with Ph3Sn(CH2)6OH and human melanoma A375 cell line: uptake and stem phenotype loss. Journal of Biological Inorganic Chemistry, 2019, 24, 223-234.	2.6	17
49	Antiproliferative activity of (Î- ⁶ -arene)ruthenacarborane sandwich complexes against HCT116 and MCF7 cell lines. Dalton Transactions, 2017, 46, 12067-12080.	3.3	16
50	The novel NO-donating compound GIT-27NO inhibits in vivo growth of human prostate cancer cells and prevents murine immunoinflammatory hepatitis. European Journal of Pharmacology, 2009, 615, 228-233.	3.5	15
51	Melanoma tumor inhibition by tetrachlorido(O,O′-dibutyl-ethylenediamine-N,N′-di-3-propionate)platinum(iv) complex: in vitro and in vivo investigations. Metallomics, 2012, 4, 1155.	2.4	15
52	CarbORevâ€5901: The First Carboraneâ€Based Inhibitor of the 5â€Lipoxygenase Pathway. ChemMedChem, 2017, 12, 1081-1086.	3.2	15
53	Carboranyl Derivatives of Rofecoxib with Cytostatic Activity against Human Melanoma and Colon Cancer Cells. Scientific Reports, 2020, 10, 4827.	3.3	15
54	Saquinavir-NO-targeted S6 protein mediates sensitivity of androgen-dependent prostate cancer cells to TRAIL. Cell Cycle, 2012, 11, 1174-1182.	2.6	14

#	Article	IF	CITATIONS
55	Delivery of [Ru(Î-6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] using unfunctionalized and mercapto functionalized SBA-15 mesoporous silica: Preparation, characterization and in vitro study. Journal of Inorganic Biochemistry, 2018, 180, 155-162.	3.5	14
56	The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model. Food and Chemical Toxicology, 2019, 129, 257-268.	3.6	14
57	2,2′â€Bipyridineâ€Modified Tamoxifen: A Versatile Vector for Molybdacarboranes. ChemMedChem, 2019, 14, 2075-2083.	3.2	13
58	Carboranyl Analogues of Mefenamic Acid and Their Biological Evaluation. ACS Omega, 2022, 7, 24282-24291.	3.5	13
59	Impact of the mesoporous silica SBA-15 functionalization on the mode of action of Ph3Sn(CH2)6OH. Materials Science and Engineering C, 2019, 100, 315-322.	7. 3	12
60	Antitumor potential of cisplatin loaded into SBA-15 mesoporous silica nanoparticles against B16F1 melanoma cells: in vitro and in vivo studies. Journal of Inorganic Biochemistry, 2021, 217, 111383.	3.5	12
61	Carboranyl Analogues of Ketoprofen with Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ACS Omega, 2019, 4, 8824-8833.	3.5	11
62	The Middle Part of the Plucked Hair Follicle Outer Root Sheath Is Identified as an Area Rich in Lineage-Specific Stem Cell Markers. Biomolecules, 2021, 11, 154.	4.0	11
63	Mesenchymal Stem Cells From Mouse Hair Follicles Reduce Hypertrophic Scarring in a Murine Wound Healing Model. Stem Cell Reviews and Reports, 2022, 18, 2028-2044.	3.8	11
64	Induction of caspase-independent apoptotic-like cell death of mouse mammary tumor TA3Ha cells in vitro and reduction of their lethality in vivo by the novel chemotherapeutic agent GIT-27NO. Free Radical Biology and Medicine, 2010, 48, 1090-1099.	2.9	10
65	Study of the anticancer properties of methyl- and phenyl-substituted carbon- and silicon-bridged ansa-titanocene complexes. Journal of Organometallic Chemistry, 2014, 751, 361-367.	1.8	10
66	Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro. Journal of Materials Chemistry B, 2014, 2, 3271-3281.	5.8	10
67	Anticancer Potential of (Pentamethylcyclopentadienyl)chloridoiridium(III) Complexes Bearing κ <i>P</i> and κ <i>P</i> ,κ <i>S</i> êCoordinated Ph ₂ CH ₂ S(O) _{<i>x</i>} Ph (<i>x</i> =0â€"2) Ligands, ChemMedChem, 2014, 9, 1586-1593.	3.2	10
68	Saquinavir-NO inhibits S6 kinase activity, impairs secretion of the encephalytogenic cytokines interleukin-17 and interferon-gamma and ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2013, 259, 55-65.	2.3	9
69	Ti-SLActive and TiZr-SLActive Dental Implant Surfaces Promote Fast Osteoblast Differentiation. Coatings, 2017, 7, 102.	2.6	9
70	Quinolineâ€Conjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem, 2019, 14, 2061-2074.	3.2	9
71	Binuclear dichlorido(η ⁶ â€ <i>p</i> å€eymene)ruthenium(II) complexes with bis(nicotinate)―and bis(isonicotinate)â€polyethylene glycol ester ligands. Applied Organometallic Chemistry, 2015, 29, 20-25.	3.5	8
72	Borcalein: a Carboraneâ€Based Analogue of Baicalein with 12â€Lipoxygenaseâ€Independent Toxicity. ChemMedChem, 2022, 17, .	3.2	8

#	Article	IF	CITATIONS
7 3	Apotransferrin inhibits interleukin-2 expression and protects mice from experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2013, 262, 72-78.	2.3	7
74	Synthesis, X-ray structure and strong inÂvitro cytotoxicity of novel organoruthenium complexes. Journal of Organometallic Chemistry, 2014, 749, 142-149.	1.8	7
75	Improved in vitro antitumor potential of (O,Oâ \in 2-Diisobutyl-ethylenediamine-N,Nâ \in 2-Diisobutyl-ethyl-ethylenediamine-N,Nâ \in 2-Diisobutyl-eth	3.5	7
76	The synthetic tubulysin derivative, tubugi-1, improves the innate immune response by macrophage polarization in addition to its direct cytotoxic effects in a murine melanoma model. Experimental Cell Research, 2019, 380, 159-170.	2.6	7
77	Combined Action of Hyper-Harmonized Hydroxylated Fullerene Water Complex and Hyperpolarized Light Leads to Melanoma Cell Reprogramming In Vitro. Nanomaterials, 2022, 12, 1331.	4.1	7
78	Alkenyl-substituted titanocene dichloride complexes: Stability studies, binding and cytotoxicity. Journal of Organometallic Chemistry, 2014, 769, 46-57.	1.8	6
79	Metals in Medicine. Bioinorganic Chemistry and Applications, 2012, 2012, 1-2.	4.1	4
80	Alpha-1-Antitrypsin Antagonizes Cisplatin-Induced Cytotoxicity in Prostate Cancer (PC3) and Melanoma Cancer (A375) Cell Lines. Pathology and Oncology Research, 2017, 23, 335-343.	1.9	4
81	Ruthenacarborane and Quinoline: A Promising Combination for the Treatment of Brain Tumors. Molecules, 2021, 26, 3801.	3.8	4
82	A Comparative Analysis of the In Vitro Anticancer Activity of Iridium(III) $\{\hat{i}\cdot 5\text{-C5Me4R}\}\$ Complexes with Variable R Groups. International Journal of Molecular Sciences, 2021, 22, 7422.	4.1	4
83	Prostate cancer metastasis and soy isoflavones: a dogfight over a bone. EXCLI Journal, 2019, 18, 106-126.	0.7	4
84	Carborane-Based Analog of Rev-5901 Attenuates Growth of Colon Carcinoma In Vivo. Molecules, 2022, 27, 4503.	3.8	3
85	No-Modified Saquinavir is Equally Efficient Against Doxorubicin Sensitive and Resistant Non-Small Cell Lung Carcinoma Cells / MODIFIKOVANA KOVANA FORMA SAKVINAVIRA EFIKASNO SU PRIMI RA RAST ĆELIJA NESITNOĆELIJSKOG KARCINOMA PLUĆA RAZLIČITE OSETUIVOSTI NA DOKSORUBICIN. Journal of Medi Biochemistry, 2013, 32, 406-416.	ical	2
86	(18-Crown-6)potassium(I) Trichlorido[28-acetyl-3-(tris-(hydroxylmethyl)amino-ethane)betulinic ester-κN]platinum(II): Synthesis and In Vitro Antitumor Activity. Inorganics, 2017, 5, 56.	2.7	2
87	Synthetic Tubulysin Derivative, Tubugi-1, Against Invasive Melanoma Cells: The Cell Death Triangle. Anticancer Research, 2019, 39, 5403-5415.	1.1	2
88	Arene Ruthenium(II) Complexes Bearing the κ-P or κ-P,κ-S Ph2P(CH2)3SPh Ligand. Molecules, 2021, 26, 1860.	3.8	2
89	Aloe emodin: From antito pro-tumor action. Hrana I Ishrana, 2018, 59, 59-67.	0.2	2
90	(S,R)-3-Phenyl-4,5-dihydro-5-isoxazole acetic acid–Nitric Oxide (GIT-27NO) – New Dress for Nitric Oxide Mission. , 2010, , 443-457.		0