Davide F Ricci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral Power in Marmoset Frontal Motor Cortex during Natural Locomotor Behavior. Cerebral Cortex, 2021, 31, 1077-1089.	2.9	8
2	Conformable polyimide-based μECoGs: Bringing the electrodes closer to the signal source. Biomaterials, 2020, 255, 120178.	11.4	58
3	A New Drug Delivery System Based on Tauroursodeoxycholic Acid and PEDOT. Chemistry - A European Journal, 2019, 25, 2322-2329.	3.3	23
4	Fast Electrophysiological Mapping of Rat Cortical Motor Representation on a Time Scale of Minutes during Skin Stimulation. Neuroscience, 2019, 414, 245-254.	2.3	1
5	Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. Journal of Micromechanics and Microengineering, 2018, 28, 065009.	2.6	27
6	In Vivo Dopamine Detection and Single Unit Recordings Using Intracortical Glassy Carbon Microelectrode Arrays. MRS Advances, 2018, 3, 1629-1634.	0.9	31
7	Incorporation of Silicon Carbide and Diamondâ€Like Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thinâ€Film Glassy Carbon Electrocorticography Arrays. Advanced Biology, 2018, 2, 1700081.	3.0	24
8	Single walled carbon nanohorns composite for neural sensing and stimulation. Sensors and Actuators B: Chemical, 2018, 271, 280-288.	7.8	26
9	Biochemically Controlled Release of Dexamethasone Covalently Bound to PEDOT. Chemistry - A European Journal, 2018, 24, 10300-10305.	3.3	19
10	Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports, 2017, 7, 40332.	3.3	116
11	Improved long-term stability of thin-film glassy carbon electrodes through the use of silicon carbide and amorphous carbon. , 2017, , .		3
12	Cortical control of objectâ€specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. Journal of Physiology, 2017, 595, 7203-7221.	2.9	27
13	Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography. International Journal of Neural Systems, 2017, 27, 1650052.	5.2	15
14	Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm. Frontiers in Neuroscience, 2017, 11, 580.	2.8	8
15	Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Biointerphases, 2017, 12, 031002.	1.6	23
16	pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Frontiers in Neuroscience, 2016, 10, 151.	2.8	29
17	Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 2016, 42, 127-135.	8.3	21
18	Significant strain and force improvements of single-walled carbon nanotube actuator: A metal chalcogenides approach. Sensors and Actuators B: Chemical, 2016, 230, 673-683.	7.8	14

#	Article	lF	CITATIONS
19	The electrolyte layer composition: A key element for improving the performance of carbon nanotube actuator. Sensors and Actuators B: Chemical, 2016, 222, 1073-1082.	7.8	3
20	Nanostructured microsphere coated with living cells and tethered with low-stiffness wire: A possible solution to brain tissue reactions. , 2015, , .		4
21	Tattoo Conductive Polymer Nanosheets for Skin ontact Applications. Advanced Healthcare Materials, 2015, 4, 983-990.	7.6	79
22	Ultraflexible Tactile Piezoelectric Sensor Based on Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technology. IEEE Sensors Journal, 2015, 15, 3819-3826.	4.7	56
23	Poly(ionic liquid)-carbon nanotubes self-supported, highly electroconductive composites and their application in electroactive devices. Composites Science and Technology, 2015, 117, 364-370.	7.8	11
24	Cross-linked carbon nanotubes buckygel actuators: an in-depth study. Proceedings of SPIE, 2015, , .	0.8	0
25	Parylene-Coated Ionic Liquid–Carbon Nanotube Actuators for User-Safe Haptic Devices. ACS Applied Materials & Interfaces, 2015, 7, 15542-15550.	8.0	16
26	A Compact and Autoclavable System for Acute Extracellular Neural Recording and Brain Pressure Monitoring for Humans. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 50-59.	4.0	2
27	Parylene coated carbon nanotube actuators for tactile stimulation. , 2015, , .		3
28	PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 342-350.	4.9	83
29	Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Frontiers in Neuroengineering, 2014, 7, 8.	4.8	66
30	Bucky gel actuators optimization towards haptic applications. Proceedings of SPIE, 2014, , .	0.8	2
31	Carbon nanotubes plastic actuator: Towards lightweight, low-voltage haptic devices. , 2014, , .		0
32	Flexible sensing systems based on polysilicon thin film transistors technology. Sensors and Actuators B: Chemical, 2013, 179, 114-124.	7.8	62
33	Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes. , 2013, , .		8
34	Piezoelectric Polymer Transducer Arrays for Flexible Tactile Sensors. IEEE Sensors Journal, 2013, 13, 4022-4029.	4.7	106
35	Biologically Compatible Neural Interface To Safely Couple Nanocoated Electrodes to the Surface of the Brain. ACS Nano, 2013, 7, 3887-3895.	14.6	48
36	Actuators based on intrinsic conductive polymers/carbon nanoparticles nanocomposites. , 2013, , .		1

#	Article	IF	CITATIONS
37	Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering. Proceedings of SPIE, 2013, , .	0.8	0
38	Piezoelectric polymer transducer arrays for flexible tactile sensors. , 2012, , .		11
39	Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization. Physica Status Solidi (B): Basic Research, 2012, 249, 2361-2364.	1.5	4
40	Comparison between Two Implementations of iCub's Fingertip. Procedia Engineering, 2012, 47, 1231-1234.	1.2	1
41	Polymer-Based Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2012, 116, 10944-10949.	3.1	65
42	Increasing the maximum strain and efficiency of bucky gel actuators by pyrrole oxidative polymerization on carbon nanotubes dispersed in an ionic liquid. Carbon, 2012, 50, 4506-4511.	10.3	15
43	Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 2012, 94, 91-98.	5.5	118
44	Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano, 2011, 5, 2206-2214.	14.6	70
45	Thymol-Induced Alterations in Candida albicans Imaged by Atomic Force Microscopy. Methods in Molecular Biology, 2011, 736, 401-410.	0.9	12
46	Recognizing and Avoiding Artifacts in Atomic Force Microscopy Imaging. Methods in Molecular Biology, 2011, 736, 31-43.	0.9	40
47	Cross-linking super-growth carbon nanotubes to boost the performance of bucky gel actuators. Carbon, 2011, 49, 2253-2257.	10.3	32
48	Mechanics and actuation properties of bucky gel-based electroactive polymers. Sensors and Actuators B: Chemical, 2011, 156, 949-953.	7.8	33
49	Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. Journal of Neural Engineering, 2011, 8, 066013.	3.5	79
50	Linear and bending actuation of bucky gel. Proceedings of SPIE, 2011, , .	0.8	0
51	How the Atomic Force Microscope Works?. Methods in Molecular Biology, 2011, 736, 3-18.	0.9	7
52	The Growth Cones of Living Neurons Probed by the Atomic Force Microscope. Methods in Molecular Biology, 2011, 736, 243-257.	0.9	4
53	Measurement Methods in Atomic Force Microscopy. Methods in Molecular Biology, 2011, 736, 19-29.	0.9	2
54	Imaging Bacterial Shape, Surface, and Appendages Before and After Treatment with Antibiotics. Methods in Molecular Biology, 2011, 736, 391-399.	0.9	5

#	Article	IF	CITATIONS
55	Performance improvement in bucky gel actuators by chemical modifications of carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2010, 4, 64-66.	2.4	10
56	Benchmarking bucky gel actuators: Chemically modified commercial carbon nanotubes versus super-growth carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3055-3058.	1.5	7
57	Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Physica Status Solidi (B): Basic Research, 2010, 247, 2703-2707.	1.5	17
58	Multiâ€walled carbon nanotubes plastic actuator. Physica Status Solidi (B): Basic Research, 2009, 246, 2820-2823.	1.5	29
59	Improvement of polypyrrole and carbon nanotube coâ€deposition techniques for high chargeâ€ŧransfer electrodes. Physica Status Solidi (B): Basic Research, 2009, 246, 2469-2472.	1.5	6
60	Singleâ€walled carbon nanotube networks growth optimization. Physica Status Solidi (B): Basic Research, 2009, 246, 2473-2476.	1.5	0
61	Exâ€situ synthesized nickel nanoparticles for multiâ€walled carbon nanotube growth on high aspect ratio substrates. Physica Status Solidi (B): Basic Research, 2008, 245, 1923-1926.	1.5	2
62	Patterning surface oxide nanostructures using atomic force microscope local anodic oxidation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1941-1943.	2.7	4
63	Direct transfer of CVD-grown transparent SWCNT networks from growth substrate to polymer. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2430-2433.	2.7	6
64	Gold nanoparticles self-assembled onto passivated glass substrates: Tuning the transition from 2D to 1D structures. Superlattices and Microstructures, 2008, 44, 608-616.	3.1	11
65	Atomic Force Microscope nanolithography on titanium: Influence of the anodic voltage waveform on the formation of oxide nanodots. Superlattices and Microstructures, 2008, 44, 670-676.	3.1	2
66	Driving the self assembly of gold nanoparticle structures using highly oriented PTFE templates. Superlattices and Microstructures, 2008, 44, 599-607.	3.1	4
67	A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 6-10.	2.7	27
68	A study of the transient current during the formation of titanium oxide nanodots by AFM anodic oxidation. Surface Science, 2007, 601, 4910-4914.	1.9	5
69	Hybrid Nanostructures: Organic Interconnections and Device Applications. , 2006, , .		0
70	CVD synthesis of single wall carbon nanotubes devoted to ULSI electronic applications. Physica Status Solidi (B): Basic Research, 2006, 243, 3077-3081.	1.5	4
71	A route to fabricate nanocontacts by X-ray lithography for the realization of single electron transistors and highly sensitive biosensors. Materials Letters, 2006, 60, 3682-3685.	2.6	6
72	Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 2005, 109, 221-226.	7.8	92

#	Article	IF	CITATIONS
73	Investigating Schottky Barriers Effects in Carbon Nanotube FETs. AIP Conference Proceedings, 2005, , .	0.4	1
74	Imaging Methods in Atomic Force Microscopy. , 2004, 242, 13-24.		2
75	Imaging Bacterial Shape, Surface, and Appendages Before and After Treatments With Antibiotics. , 2004, 242, 179-188.		1
76	Recognizing and Avoiding Artifacts in AFM Imaging. , 2004, 242, 25-38.		30
77	Growth Cones of Living Neurons Probed by Atomic Force Microscopy. , 2004, 242, 125-140.		6
78	Fabrication of Field Effect Transistors based on carbon nanotubes made by LASER ablation. AIP Conference Proceedings, 2004, , .	0.4	0
79	Morphology and conductivity in poly(ortho-anisidine)/carbon nanotubes nanocomposite films. Thin Solid Films, 2004, 468, 17-22.	1.8	18
80	How the atomic force microscope works. Methods in Molecular Biology, 2004, 242, 3-12.	0.9	2
81	Microstructure Origin of the Conductivity Differences in Aggregated CuS Films of Different Thickness. Langmuir, 2003, 19, 766-771.	3.5	86
82	Morphostructural Damage and the Inhibition of Bacterial Adhesiveness of <i>Staphylococcus aureus</i> and <i>Moraxella catarrhalis</i> Induced by Moxifloxacin. Journal of Chemotherapy, 2003, 15, 543-550.	1.5	1
83	Differences in the susceptibility of Streptococcus pyogenes to rokitamycin and erythromycin A revealed by morphostructural atomic force microscopy. Journal of Antimicrobial Chemotherapy, 2002, 50, 457-460.	3.0	15
84	Daptomycin Morphostructural Damage in Bacillus cereus Visualized by Atomic Force Microscopy. Journal of Chemotherapy, 2002, 14, 336-341.	1.5	17
85	Langmuir films of thiolated gold nanoparticles transferred onto functionalized substrate: 2-D local organization. Materials Science and Engineering C, 2002, 22, 187-191.	7.3	10
86	Atomic Force Microscopy: Theory and Practice in Bacteria Morphostructural Analysis. , 2001, 48, 199-207.		0
87	Endothelial cell adhesion on bioerodable polymers. Journal of Materials Science: Materials in Medicine, 2001, 12, 613-619.	3.6	13
88	Langmuir-Blodgett films of antibodies as mediators of endothelial cell adhesion on polyurethanes. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 295-304.	3.5	4
89	Atomic Force Microscopy: Application to Investigation of <i>Escherichia coli</i> Morphology before and after Exposure to Cefodizime. Antimicrobial Agents and Chemotherapy, 1998, 42, 18-22.	3.2	140
90	Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy. , 1997, 36, 165-171.		42

#	Article	IF	CITATIONS
91	The neuron-transistor junction: linking equivalent electric circuit models to microscopic descriptions. Thin Solid Films, 1996, 284-285, 772-775.	1.8	10
92	Optimization of the interaction between ethylenevinyl alcohol copolymers and human endothelial cells. Journal of Materials Science: Materials in Medicine, 1996, 7, 8-12.	3.6	5
93	Investigation on the surface orientation of cylindrical microdomains in styrene-butadiene-styrene triblock copolymers by scanning force microscopy/transmission electron microscopy. Macromolecular Rapid Communications, 1995, 16, 919-925.	3.9	7
94	Evaluation of poly(vinyl alcohol) hydrogels as a component of hybrid artificial tissues. Journal of Materials Science: Materials in Medicine, 1995, 6, 71-75.	3.6	41
95	Scanning electron microscopy and atomic force microscopy of alkanethiol monolayers on gold. Thin Solid Films, 1994, 243, 431-436.	1.8	11
96	Scanning force microscopy on live cultured cells: Imaging and forceâ€versusâ€distance investigations. Journal of Microscopy, 1994, 176, 254-261.	1.8	29
97	Scanning tunneling microscopy imaging of organic layers on graphite. , 1992, , .		0