Ling-Ling Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology, 2021, 22, 96-118.	37.0	2,319
2	Circular Intronic Long Noncoding RNAs. Molecular Cell, 2013, 51, 792-806.	9.7	1,858
3	Complementary Sequence-Mediated Exon Circularization. Cell, 2014, 159, 134-147.	28.9	1,638
4	Regulation of circRNA biogenesis. RNA Biology, 2015, 12, 381-388.	3.1	1,525
5	The Biogenesis, Functions, and Challenges of Circular RNAs. Molecular Cell, 2018, 71, 428-442.	9.7	1,511
6	The biogenesis and emerging roles of circular RNAs. Nature Reviews Molecular Cell Biology, 2016, 17, 205-211.	37.0	1,377
7	Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Research, 2017, 27, 626-641.	12.0	1,367
8	Cellular functions of long noncoding RNAs. Nature Cell Biology, 2019, 21, 542-551.	10.3	1,037
9	The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature Reviews Molecular Cell Biology, 2020, 21, 475-490.	37.0	821
10	Linking Long Noncoding RNA Localization and Function. Trends in Biochemical Sciences, 2016, 41, 761-772.	7.5	814
11	Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Research, 2016, 26, 1277-1287.	5.5	799
12	Altered Nuclear Retention of mRNAs Containing Inverted Repeats in Human Embryonic Stem Cells: Functional Role of a Nuclear Noncoding RNA. Molecular Cell, 2009, 35, 467-478.	9.7	589
13	Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Research, 2014, 24, 513-531.	12.0	588
14	Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell, 2019, 177, 865-880.e21.	28.9	543
15	Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Molecular Cell, 2017, 67, 214-227.e7.	9.7	533
16	The Biogenesis of Nascent Circular RNAs. Cell Reports, 2016, 15, 611-624.	6.4	465
17	Long Noncoding RNAs with snoRNA Ends. Molecular Cell, 2012, 48, 219-230.	9.7	389
18	Genomewide characterization of non-polyadenylated RNAs. Genome Biology, 2011, 12, R16.	9.6	365

2

#	Article	IF	CITATIONS
19	The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Molecular Cell, 2017, 68, 940-954.e3.	9.7	319
20	Circular RNAs: Characterization, cellular roles, and applications. Cell, 2022, 185, 2016-2034.	28.9	291
21	Alu element-mediated gene silencing. EMBO Journal, 2008, 27, 1694-1705.	7.8	290
22	The Diversity of Long Noncoding RNAs and Their Generation. Trends in Genetics, 2017, 33, 540-552.	6.7	265
23	Decoding the function of nuclear long non-coding RNAs. Current Opinion in Cell Biology, 2010, 22, 357-364.	5.4	240
24	Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems. Molecular Cell, 2019, 76, 981-997.e7.	9.7	231
25	SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell, 2017, 169, 664-678.e16.	28.9	205
26	Distinct Processing of IncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell, 2020, 181, 621-636.e22.	28.9	192
27	Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. Molecular Cell, 2019, 76, 767-783.e11.	9.7	186
28	Screening for functional circular RNAs using the CRISPR–Cas13 system. Nature Methods, 2021, 18, 51-59.	19.0	179
29	Genome-Wide Studies Reveal That Lin28 Enhances the Translation of Genes Important for Growth and Survival of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 496-504.	3.2	176
30	Increased complexity of circRNA expression during species evolution. RNA Biology, 2017, 14, 1064-1074.	3.1	166
31	Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nature Cell Biology, 2018, 20, 1145-1158.	10.3	124
32	Unusual Processing Generates SPA LncRNAs that Sequester Multiple RNA Binding Proteins. Molecular Cell, 2016, 64, 534-548.	9.7	123
33	ALU ternative Regulation for Gene Expression. Trends in Cell Biology, 2017, 27, 480-490.	7.9	108
34	N6-Methyladenosines Modulate A-to-I RNA Editing. Molecular Cell, 2018, 69, 126-135.e6.	9.7	108
35	Life without A tail: New formats of long noncoding RNAs. International Journal of Biochemistry and Cell Biology, 2014, 54, 338-349.	2.8	104
36	Long noncoding RNAs in mammalian cells: what, where, and why?. Wiley Interdisciplinary Reviews RNA, 2010, 1, 2-21.	6.4	99

#	Article	IF	CITATIONS
37	CircRNA-derived pseudogenes. Cell Research, 2016, 26, 747-750.	12.0	96
38	CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell, 2015, 17, 221-232.	11.1	91
39	Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle, 2008, 7, 3294-3301.	2.6	85
40	Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IR <i>Alu</i> s. Genes and Development, 2015, 29, 630-645.	5.9	80
41	IncRNA <i>SLERT</i> controls phase separation of FC/DFCs to facilitate Pol I transcription. Science, 2021, 373, 547-555.	12.6	80
42	A guide to naming human nonâ€coding RNA genes. EMBO Journal, 2020, 39, e103777.	7.8	77
43	Biogenesis and Regulatory Roles of Circular RNAs. Annual Review of Cell and Developmental Biology, 2022, 38, 263-289.	9.4	75
44	ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Research, 2015, 25, 459-476.	12.0	73
45	Discovery and Structural Modification of Inhibitors of Methionine Aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. Journal of Medicinal Chemistry, 2003, 46, 2631-2640.	6.4	66
46	Mechanisms of Long Noncoding RNA Nuclear Retention. Trends in Biochemical Sciences, 2020, 45, 947-960.	7.5	63
47	Functional Analysis of Long Noncoding RNAs in Development and Disease. Advances in Experimental Medicine and Biology, 2014, 825, 129-158.	1.6	61
48	Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells. Cell Cycle, 2010, 9, 3552-3564.	2.6	59
49	RNA structure probing uncovers RNA structure-dependent biological functions. Nature Chemical Biology, 2021, 17, 755-766.	8.0	59
50	CIRCexplorer3: A CLEAR Pipeline for Direct Comparison of Circular and Linear RNA Expression. Genomics, Proteomics and Bioinformatics, 2019, 17, 511-521.	6.9	55
51	Specificity for inhibitors of metal-substituted methionine aminopeptidase. Biochemical and Biophysical Research Communications, 2003, 307, 172-179.	2.1	52
52	Characterization of Circular RNAs. Methods in Molecular Biology, 2016, 1402, 215-227.	0.9	52
53	RNA circles with minimized immunogenicity as potent PKR inhibitors. Molecular Cell, 2022, 82, 420-434.e6.	9.7	52
54	Processing and roles of snoRNA-ended long noncoding RNAs. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 596-606.	5.2	48

#	Article	IF	CITATIONS
55	SnoVectors for nuclear expression of RNA. Nucleic Acids Research, 2015, 43, e5-e5.	14.5	43
56	Linking circular intronic RNA degradation and function in transcription by RNase H1. Science China Life Sciences, 2021, 64, 1795-1809.	4.9	43
57	Species-specific alternative splicing leads to unique expression of sno-IncRNAs. BMC Genomics, 2014, 15, 287.	2.8	42
58	Genome-Wide Annotation of circRNAs and Their Alternative Back-Splicing/Splicing with CIRCexplorer Pipeline. Methods in Molecular Biology, 2019, 1870, 137-149.	0.9	41
59	Research progress of long noncoding RNA in China. IUBMB Life, 2016, 68, 887-893.	3.4	34
60	On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin. Rna, 2008, 14, 1773-1781.	3.5	32
61	Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. BMC Genomics, 2013, 14, 206.	2.8	32
62	Long noncoding RNA and protein abundance in IncRNPs. Rna, 2021, 27, 1427-1440.	3.5	31
63	The long noncoding RNA regulation at the MYC locus. Current Opinion in Genetics and Development, 2015, 33, 41-48.	3.3	26
64	Analysis of Rice Transcriptome Reveals the LncRNA/CircRNA Regulation in Tissue Development. Rice, 2021, 14, 14.	4.0	26
65	Characterization of Full Length and Truncated Type I Human Methionine Aminopeptidases Expressed from Escherichia coli. Biochemistry, 2004, 43, 7892-7898.	2.5	25
66	Organization and function of paraspeckles. Essays in Biochemistry, 2020, 64, 875-882.	4.7	24
67	RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression. Cell Discovery, 2017, 3, 16050.	6.7	23
68	Enhancing the RNA engineering toolkit. Science, 2017, 358, 996-997.	12.6	21
69	Mutations at the S1 Sites of Methionine Aminopeptidases from Escherichia coli and Homo sapiens Reveal the Residues Critical for Substrate Specificity. Journal of Biological Chemistry, 2004, 279, 21128-21134.	3.4	19
70	Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 635-638.	2.2	19
71	Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3732-3736.	2.2	18
72	CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets. Methods, 2021, 196, 3-10.	3.8	18

#	Article	IF	CITATIONS
73	Identification of potent type I MetAPs inhibitors by simple bioisosteric replacement. Part 2: SAR studies of 5-heteroalkyl substituted TCAT derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4130-4135.	2.2	17
74	Gene expression profiling of non-polyadenylated RNA-seq across species. Genomics Data, 2014, 2, 237-241.	1.3	16
75	Fractionation of Non-polyadenylated and Ribosomal-Free RNAs from Mammalian Cells. Methods in Molecular Biology, 2015, 1206, 69-80.	0.9	16
76	Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biology, 2022, 23, 16.	8.8	16
77	SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3′ tag-based RNA-seq of single cells. Genome Biology, 2021, 22, 221.	8.8	15
78	Microexons Go Big. Cell, 2014, 159, 1488-1489.	28.9	14
79	Expanded regulation of circular RNA translation. Molecular Cell, 2021, 81, 4111-4113.	9.7	13
80	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
81	Multi-color RNA imaging with CRISPR-Cas13b systems in living cells. , 2022, 1, 100044.		13
82	Nuclear Editing of mRNA 3′-UTRs. Current Topics in Microbiology and Immunology, 2011, 353, 111-121.	1.1	11
83	Screening circular RNAs with functional potential using the RfxCas13d/BSJ-gRNA system. Nature Protocols, 2022, 17, 2085-2107.	12.0	11
84	Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 2: SAR studies on the pyridine ring 3-substituent. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 639-644.	2.2	9
85	Design and synthesis of chromogenic thiopeptolide substrates as MetAPs active site probes. Bioorganic and Medicinal Chemistry, 2004, 12, 2853-2861.	3.0	8
86	Mapping circular RNA structures in living cells by SHAPE-MaP. Methods, 2021, 196, 47-55.	3.8	8
87	Characterization of Circular RNAs. Methods in Molecular Biology, 2021, 2372, 179-192.	0.9	8
88	Protocol for Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 System. STAR Protocols, 2020, 1, 100037.	1.2	7
89	Scientific migration of junior scientists to China. Genome Biology, 2014, 15, 119.	9.6	6
90	Understanding lncRNA–protein assemblies with imaging and single-molecule approaches. Current Opinion in Genetics and Development, 2022, 72, 128-137.	3.3	6

#	Article	IF	CITATIONS
91	Ling-Ling Chen: Linking Long Noncoding RNA Processing and Function to RNA Biology. Trends in Biochemical Sciences, 2016, 41, 733-734.	7.5	5
92	An optimized fixation method containing glyoxal and paraformaldehyde for imaging nuclear bodies. Rna, 2021, 27, 725-733.	3.5	5
93	Gear Up in Circles. Molecular Cell, 2015, 58, 715-717.	9.7	4
94	Shedding light on paraspeckle structure by super-resolution microscopy. Journal of Cell Biology, 2016, 214, 789-791.	5.2	3
95	Linking RNA Processing and Function. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 67-82.	1.1	3
96	LETN and NPM1 tango in human nucleoli. Cell Research, 2021, 31, 609-610.	12.0	3
97	Competition of RNA splicing: line in or circle up. Science China Life Sciences, 2014, 57, 1232-1233.	4.9	2
98	A two-fold challenge: the experience of women of color in genomics. Genome Biology, 2016, 17, 210.	8.8	1
99	A Role for A-to-I Editing in Gene Silencing. , 0, , 190-202.		0
100	A new class of intronâ€derived long noncoding RNAs. FASEB Journal, 2012, 26, 203.1.	0.5	0
101	7S RNA is surveilling mitochondrial DNA transcription. , 0, , .		0