
Benjamin C Remington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishment of Reference Doses for residues of allergenic foods: Report of the VITAL Expert Panel. Food and Chemical Toxicology, 2014, 63, 9-17.	3.6	234
2	Allergen reference doses for precautionary labeling (VITAL 2.0): Clinical implications. Journal of Allergy and Clinical Immunology, 2014, 133, 156-164.	2.9	177
3	Threshold dose for peanut: Risk characterization based upon diagnostic oral challenge of a series of 286 peanut-allergic individuals. Food and Chemical Toxicology, 2010, 48, 814-819.	3.6	140
4	Updated population minimal eliciting dose distributions for use in risk assessment of 14 priority food allergens. Food and Chemical Toxicology, 2020, 139, 111259.	3.6	124
5	Cysteine p <i>K</i> _a Depression by a Protonated Glutamic Acid in Human DJ-1. Biochemistry, 2008, 47, 7430-7440.	2.5	110
6	Full range of population Eliciting Dose values for 14 priority allergenic foods and recommendations for use in risk characterization. Food and Chemical Toxicology, 2020, 146, 111831.	3.6	75
7	Unintended allergens in precautionary labelled and unlabelled products pose significant risks to <scp>UK</scp> allergic consumers. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 813-819.	5.7	73
8	Majority of shrimp-allergic patients are allergic to mealworm. Journal of Allergy and Clinical Immunology, 2016, 137, 1261-1263.	2.9	69
9	Quantitative risk assessment of foods containing peanut advisory labeling. Food and Chemical Toxicology, 2013, 62, 179-187.	3.6	63
10	Survey of peanut levels in selected Irish food products bearing peanut allergen advisory labels. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1467-1472.	2.3	41
11	Deriving individual threshold doses from clinical food challenge data for population risk assessment of food allergens. Journal of Allergy and Clinical Immunology, 2019, 144, 1290-1309.	2.9	37
12	How does dose impact on the severity of foodâ€induced allergic reactions, and can this improve risk assessment for allergenic foods?. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1383-1392.	5.7	36
13	Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food and Chemical Toxicology, 2018, 112, 97-107.	3.6	36
14	Using data from food challenges to inform management of consumers with food allergy: AÂsystematic review with individual participant data meta-analysis. Journal of Allergy and Clinical Immunology, 2021, 147, 2249-2262.e7.	2.9	35
15	Componentâ€resolved diagnostics demonstrates that most peanutâ€allergic individuals could potentially introduce tree nuts to their diet. Clinical and Experimental Allergy, 2018, 48, 712-721.	2.9	32
16	Quantitative risk reduction through peanut immunotherapy: Safety benefits of an increased threshold in Europe. Pediatric Allergy and Immunology, 2018, 29, 762-772.	2.6	28
17	Food allergy population thresholds: An evaluation of the number of oral food challenges and dosing schemes on the accuracy of threshold dose distribution modeling. Food and Chemical Toxicology, 2014, 70, 134-143.	3.6	25
18	Estimated risk reduction to packaged food reactions by epicutaneous immunotherapy (EPIT) for peanut allergy. Annals of Allergy, Asthma and Immunology, 2019, 123, 488-493.e2.	1.0	25

#	Article	IF	CITATIONS
19	Peanut Can Be Used as a Reference Allergen for Hazard Characterization in Food Allergen Risk Management: A Rapid Evidence Assessment and Meta-Analysis. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 59-70.	3.8	21
20	Soy in wheat – Contamination levels and food allergy risk assessment. Food and Chemical Toxicology, 2013, 62, 485-491.	3.6	19
21	The importance of reducing risk in peanut allergy: Current and future therapies. Annals of Allergy, Asthma and Immunology, 2018, 120, 124-127.	1.0	18
22	Bayesian Stacked Parametric Survival with Frailty Components and Interval ensored Failure Times: An Application to Food Allergy Risk. Risk Analysis, 2021, 41, 56-66.	2.7	18
23	Sensitivity analysis to derive a food consumption point estimate for deterministic food allergy risk assessment. Food and Chemical Toxicology, 2019, 125, 413-421.	3.6	15
24	Reproducibility of food challenge to cow's milk: Systematic review with individual participant data meta-analysis. Journal of Allergy and Clinical Immunology, 2022, 150, 1135-1143.e8.	2.9	12
25	Addressing risk management difficulties in children with food allergies. Pediatric Allergy and Immunology, 2021, 32, 658-666.	2.6	11
26	†Too high, too low': The complexities of using thresholds in isolation to inform precautionary allergen (†may contain') labels. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1661-1666.	5.7	9
27	Understanding food allergen thresholds requires careful analysis of the available clinical data. Journal of Allergy and Clinical Immunology, 2015, 135, 583-584.	2.9	8
28	Suitability of lowâ€dose, open food challenge data to supplement doubleâ€blind, placeboâ€controlled data in generation of food allergen threshold dose distributions. Clinical and Experimental Allergy, 2021, 51, 151-154.	2.9	8
29	Allergen quantitative risk assessment within food operations: Concepts towards development of practical guidance based on an ILSI Europe workshop. Food Control, 2022, 138, 108917.	5.5	8
30	Risk Reduction in Peanut Immunotherapy. Immunology and Allergy Clinics of North America, 2020, 40, 187-200.	1.9	7
31	Risk of shared equipment in restaurants for consumers with peanut allergy: a simulation for preparing Asian foods. Annals of Allergy, Asthma and Immunology, 2020, 125, 543-551.e6.	1.0	7
32	The population threshold for soy as an allergenic food – Why did the Reference Dose decrease in VITAL 3.0?. Trends in Food Science and Technology, 2021, 112, 99-108.	15.1	7
33	Updated threshold doseâ€distribution data for sesame. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3124-3162.	5.7	6
34	Threshold Dose for Shrimp: A Risk Characterization Based On Objective Reactions in Clinical Studies. Journal of Allergy and Clinical Immunology, 2013, 131, AB88.	2.9	4
35	Post hoc analysis of epicutaneous immunotherapy for peanut allergy phase 3 results. Annals of Allergy, Asthma and Immunology, 2021, 126, 208-209.	1.0	4
36	Sesame as an allergen in Lebanese food products: Occurrence, consumption and quantitative risk assessment. Food and Chemical Toxicology, 2021, 156, 112511.	3.6	4

BENJAMIN C REMINGTON

#	Article	IF	CITATIONS
37	Risk Assessment of Foods Containing Peanut Advisory Labeling. Journal of Allergy and Clinical Immunology, 2010, 125, AB218.	2.9	3
38	Frequentist and Bayesian approaches for food allergen risk assessment: risk outcome and uncertainty comparisons. Scientific Reports, 2019, 9, 18206.	3.3	3
39	A systematic comparison of food intake data of the United States and the Netherlands for food allergen risk assessment. Food and Chemical Toxicology, 2021, 150, 112006.	3.6	3
40	Predicted number of peanutâ€allergic patients needed to treat with epicutaneous immunotherapy (EPIT) to prevent one allergic reaction: A novel approach to assessing relevance. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3223-3226.	5.7	3
41	Risk Assessment of Soy Commodity Contamination in Wheat Flour. Journal of Allergy and Clinical Immunology, 2011, 127, AB114-AB114.	2.9	1
42	P333 Quantitative risk reduction through peanut immunotherapy: safety benefits of an increased threshold in Europe. Annals of Allergy, Asthma and Immunology, 2017, 119, S79.	1.0	1
43	Shared Cooking Equipment in Restaurants: A Quantitative Risk Assessment for Peanut-Allergic Consumers. Journal of Allergy and Clinical Immunology, 2019, 143, AB239.	2.9	1
44	Clinical Protocols For Allergen Threshold Studies: Does One Stand Above The Rest?. Journal of Allergy and Clinical Immunology, 2012, 129, AB30.	2.9	0
45	Food allergy and risk assessment: Current status and future directions. IOP Conference Series: Earth and Environmental Science, 2017, 85, 012003.	0.3	0