Déborah Bourc'his

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155005/publications.pdf

Version: 2024-02-01

50 papers 8,855 citations

147801 31 h-index 54 g-index

68 all docs 68 docs citations

68 times ranked 9714 citing authors

#	Article	IF	CITATIONS
1	The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology, 2019, 20, 590-607.	37.0	1,269
2	Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 1999, 402, 187-191.	27.8	1,056
3	Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature, 2004, 431, 96-99.	27.8	1,043
4	A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice. Molecular Cell, 2008, 31, 785-799.	9.7	1,029
5	MIWI2 Is Essential for Spermatogenesis and Repression of Transposons in the Mouse Male Germline. Developmental Cell, 2007, 12, 503-514.	7.0	1,014
6	Genomic Imprinting and Physiological Processes in Mammals. Cell, 2019, 176, 952-965.	28.9	395
7	The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016, 354, 909-912.	12.6	267
8	An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. ELife, 2016, 5, .	6.0	228
9	A Small-RNA Perspective on Gametogenesis, Fertilization, and Early Zygotic Development. Science, 2010, 330, 617-622.	12.6	195
10	Epigenetic Decisions in Mammalian Germ Cells. Science, 2007, 316, 398-399.	12.6	168
10	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276.	12.6 5.2	168
	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182,		
11	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276.	5.2	167
11 12	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic	5.2 27.8	167 156
11 12	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes and Development, 2015, 29, 1256-1270. Small RNA guides for de novo DNA methylation in mammalian germ cells: Figure 1 Genes and	5.2 27.8 5.9	167 156 146
11 12 13	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes and Development, 2015, 29, 1256-1270. Small RNA guides for de novo DNA methylation in mammalian germ cells: Figure 1 Genes and Development, 2008, 22, 970-975. Regulation of alternative polyadenylation by genomic imprinting. Genes and Development, 2008, 22,	5.2 27.8 5.9 5.9	167 156 146 145
11 12 13 14	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes and Development, 2015, 29, 1256-1270. Small RNA guides for de novo DNA methylation in mammalian germ cells: Figure 1 Genes and Development, 2008, 22, 970-975. Regulation of alternative polyadenylation by genomic imprinting. Genes and Development, 2008, 22, 1141-1146. Protection against De Novo Methylation Is Instrumental in Maintaining Parent-of-Origin Methylation	5.2 27.8 5.9 5.9	167 156 146 145

#	Article	IF	CITATIONS
19	Identification of the control region for tissue-specific imprinting of the stimulatory G protein α-subunit. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5513-5518.	7.1	97
20	\hat{l}_{\pm} -Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genetics, 1997, 99, 738-745.	3.8	85
21	Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nature Genetics, 2017, 49, 110-118.	21.4	76
22	Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, <i>TFPI2</i> /i>/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Research, 2008, 18, 1270-1281.	5.5	72
23	Gene body <scp>DNA</scp> methylation conspires with H3K36me3 to preclude aberrant transcription. EMBO Journal, 2017, 36, 1471-1473.	7.8	67
24	The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes and Development, 2014, 28, 463-478.	5.9	63
25	Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mobile DNA, 2019, 10, 52.	3.6	63
26	The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution. PLoS Genetics, 2010, 6, e1001214.	3.5	61
27	Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Molecular and Cellular Endocrinology, 2008, 282, 87-94.	3.2	52
28	WAMIDEX: A web atlas of murine genomic imprinting and differential expression. Epigenetics, 2008, 3, 89-96.	2.7	51
29	The discovery and importance of genomic imprinting. ELife, 2018, 7, .	6.0	50
30	Identification and resolution of artifacts in the interpretation of imprinted gene expression. Briefings in Functional Genomics, 2010, 9, 374-384.	2.7	39
31	DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nature Genetics, 2022, 54, 469-480.	21.4	39
32	Plasticity in Dnmt3L-dependent and -independent modes of de novo methylation in the developing mouse embryo. Development (Cambridge), 2013, 140, 562-572.	2.5	33
33	Parental Epigenetic Asymmetry in Mammals. Current Topics in Developmental Biology, 2013, 104, 293-328.	2.2	27
34	Helicase homologues maintain cytosine methylation in plants and mammals. BioEssays, 2002, 24, 297-299.	2.5	25
35	Allele-specific demethylation at an imprinted mammalian promoter. Nucleic Acids Research, 2007, 35, 7031-7039.	14.5	22
36	Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes. Nucleic Acids Research, 2011, 39, 4577-4586.	14.5	22

#	Article	IF	CITATIONS
37	Characterization of Novel Paternal ncRNAs at the Plagl1 Locus, Including Hymai, Predicted to Interact with Regulators of Active Chromatin. PLoS ONE, 2012, 7, e38907.	2.5	21
38	The mammalian-specific Tex19.1 gene plays an essential role in spermatogenesis and placenta-supported development. Human Reproduction, 2013, 28, 2201-2214.	0.9	20
39	Dynamic Evolution of De Novo DNA Methyltransferases in Rodent and Primate Genomes. Molecular Biology and Evolution, 2020, 37, 1882-1892.	8.9	18
40	Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. Current Opinion in Genetics and Development, 2015, 31, 42-49.	3.3	16
41	Genetics and epigenetics of hydatidiform moles. Nature Genetics, 2006, 38, 274-276.	21.4	14
42	Meiosis, a New Playground for Retrotransposon Evolution. Developmental Cell, 2021, 56, 1-2.	7.0	14
43	Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from na \tilde{A} -ve pluripotency. ELife, 2019, 8, .	6.0	11
44	Germline correction of an epimutation related to Silver-Russell syndrome. Human Molecular Genetics, 2015, 24, 3314-3321.	2.9	10
45	The imprinted Zdbf2 gene finely tunes control of feeding and growth in neonates. ELife, 2022, 11, .	6.0	9
46	<i>Tex19</i> paralogs are new members of the piRNA pathway controlling retrotransposon suppression. Journal of Cell Science, 2017, 130, 1463-1474.	2.0	8
47	Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Human Reproduction, 2019, 34, 612-622.	0.9	8
48	PLZF Acetylation Levels Regulate NKT Cell Differentiation. Journal of Immunology, 2021, 207, 809-823.	0.8	5
49	Metastable epialleles are stable in their instability. Nature Genetics, 2021, 53, 1121-1123.	21.4	3
50	A single-cell chromatin map of human embryos. Nature Cell Biology, 2018, 20, 742-744.	10.3	2