Klaus Butterbach-Bahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154973/publications.pdf Version: 2024-02-01

384 papers	25,499 citations	6613 79 h-index	12272 133 g-index
411	411	411	17843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions—A laboratory-based measurement approach. Science of the Total Environment, 2022, 807, 151051.	8.0	13
2	N2O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Science of the Total Environment, 2022, 806, 150883.	8.0	18
3	The potential importance of soil denitrification as a major N loss pathway in intensive greenhouse vegetable production systems. Plant and Soil, 2022, 471, 157-174.	3.7	6
4	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	5.2	29
5	Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 2022, 812, 152532.	8.0	30
6	Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal, 2022, 16, 100445.	3.3	8
7	How to Improve Cumulative Methane and Nitrous Oxide Flux Estimations of the Nonâ€Steadyâ€State Chamber Method?. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
8	Soil clay minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane landscapes. Soil Biology and Biochemistry, 2022, 168, 108612.	8.8	11
9	A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 2022, 828, 154388.	8.0	29
10	Impact of anaerobic soil disinfestation on seasonal N2O emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Science of the Total Environment, 2022, 830, 154673.	8.0	9
11	Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of the Total Environment, 2022, 836, 154932.	8.0	17
12	Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	3
13	A synthesis of nitric oxide emissions across global fertilized croplands from cropâ€specific emission factors. Global Change Biology, 2022, 28, 4395-4408.	9.5	10
14	Greenhouse Gas Mitigation Potential of Alternate Wetting and Drying for Rice Production at National Scale—A Modeling Case Study for the Philippines. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
15	Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems and Environment, 2022, 335, 108007.	5.3	13
16	Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China – Effects of cultivation years, management, and shelter. Environmental Pollution, 2022, 307, 119494.	7.5	13
17	Basinâ€scale estimates of greenhouse gas emissions from the Mara River, Kenya: Importance of discharge, stream size, and land use/land cover. Limnology and Oceanography, 2022, 67, 1776-1793.	3.1	11
18	Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery. Remote Sensing of Environment, 2022, 279, 113110.	11.0	3

#	Article	IF	CITATIONS
19	Increasing the Environmental Sustainability of Greenhouse Vegetable Production by Combining Biochar Application and Drip Fertigation—Effects on Soil N2O Emissions and Carbon Sequestrations. Agronomy, 2022, 12, 1661.	3.0	3
20	Elevated atmospheric CO ₂ reduces yieldâ€scaled N ₂ O fluxes from subtropical rice systems: Six siteâ€years field experiments. Global Change Biology, 2021, 27, 327-339.	9.5	19
21	Interactive effects of dung deposited onto urine patches on greenhouse gas fluxes from tropical pastures in Kenya. Science of the Total Environment, 2021, 761, 143184.	8.0	13
22	Methodology for Measuring Greenhouse Gas Emissions from Agricultural Soils Using Non-isotopic Techniques. , 2021, , 11-108.		3
23	Greenhouse Gases from Agriculture. , 2021, , 1-10.		2
24	Methane Production in Ruminant Animals. , 2021, , 177-211.		0
25	Calculation of new enteric methane emission factors for small ruminants in western Kenya highlights the heterogeneity of smallholder production systems. Animal Production Science, 2021, 61, 602.	1.3	5
26	Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. , 2021, , 109-139.		1
27	Isotopic Techniques to Measure N2O, N2 and Their Sources. , 2021, , 213-301.		8
28	High Application Rates of Biochar to Mitigate N2O Emissions From a N-Fertilized Tropical Soil Under Warming Conditions. Frontiers in Environmental Science, 2021, 8, .	3.3	13
29	Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals, 2021, 11, 564.	2.3	6
30	Heat stress will detrimentally impact future livestock production in East Africa. Nature Food, 2021, 2, 88-96.	14.0	38
31	Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environmental Pollution, 2021, 272, 116372.	7.5	86
32	Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environmental Pollution, 2021, 273, 116521.	7.5	36
33	Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 2021, 27, 2807-2821.	9.5	74
34	Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya. Waste Management, 2021, 126, 209-220.	7.4	17
35	Nitrogen cycling in pastoral livestock systems in Subâ€Saharan Africa: knowns and unknowns. Ecological Applications, 2021, 31, e02368.	3.8	7
36	Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability and moisture level. Plant and Soil, 2021, 466, 121-138.	3.7	8

#	Article	IF	CITATIONS
37	Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones. Geoscientific Model Development, 2021, 14, 3789-3812.	3.6	3
38	Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agriculture, Ecosystems and Environment, 2021, 313, 107379.	5.3	27
39	Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties. Plant and Soil, 2021, 467, 107-127.	3.7	32
40	Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. European Journal of Agronomy, 2021, 128, 126306.	4.1	14
41	Improving soil respiration while maintaining soil C stocks in sunken plastic greenhouse vegetable production systems – Advantages of straw application and drip fertigation. Agriculture, Ecosystems and Environment, 2021, 316, 107464.	5.3	8
42	Anaerobic soil disinfestation with incorporation of straw and manure significantly increases greenhouse gases emission and reduces nitrate leaching while increasing leaching of dissolved organic N. Science of the Total Environment, 2021, 785, 147307.	8.0	16
43	Soil N2O emission from organic and conventional cotton farming in Northern Tanzania. Science of the Total Environment, 2021, 785, 147301.	8.0	3
44	Climate Change Can Accelerate Depletion of Montane Grassland C Stocks. Global Biogeochemical Cycles, 2021, 35, e2020GB006792.	4.9	7
45	An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology, 2021, 308-309, 108570.	4.8	4
46	Soil type affects not only magnitude but also thermal sensitivity of N2O emissions in subtropical mountain area. Science of the Total Environment, 2021, 797, 149127.	8.0	9
47	Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems and Environment, 2021, 322, 107637.	5.3	10
48	Effect of vole bioturbation on N2O, NO, NH3, CH4 and CO2 fluxes of slurry fertilized and non-fertilized montane grassland soils in Southern Germany. Science of the Total Environment, 2021, 800, 149597.	8.0	1
49	Sustainable livestock development in low- and middle-income countries: shedding light on evidence-based solutions. Environmental Research Letters, 2021, 16, 011001.	5.2	17
50	Effects of slurry acidification on soil N ₂ O fluxes and denitrification. Journal of Plant Nutrition and Soil Science, 2021, 184, 696-708.	1.9	6
51	Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Scientific Reports, 2021, 11, 22094.	3.3	5
52	Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth, 2021, 4, 1752-1763.	6.8	38
53	Influence of soil properties on N2O and CO2 emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry, 2020, 140, 107636.	8.8	34
54	Simultaneous quantification of N ₂ , NH ₃ and N ₂ O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26, 2292-2303.	9.5	47

#	Article	IF	CITATIONS
55	Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Current Opinion in Environmental Sustainability, 2020, 47, 72-80.	6.3	56
56	Global Research Alliance N ₂ O chamber methodology guidelines: Considerations for automated flux measurement. Journal of Environmental Quality, 2020, 49, 1126-1140.	2.0	26
57	From research to policy: optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions. Current Opinion in Environmental Sustainability, 2020, 47, 28-36.	6.3	20
58	Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biology and Biochemistry, 2020, 151, 108058.	8.8	32
59	Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	28
60	Livestock enclosures in drylands of Sub-Saharan Africa are overlooked hotspots of N2O emissions. Nature Communications, 2020, 11, 4644.	12.8	27
61	Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Current Opinion in Environmental Sustainability, 2020, 47, 95-105.	6.3	40
62	Will dairy cattle production in West Africa be challenged by heat stress in the future?. Climatic Change, 2020, 161, 665-685.	3.6	12
63	The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 2020, 451, 325-343.	3.7	33
64	Dinitrogen (N2) pulse emissions during freeze-thaw cycles from montane grassland soil. Biology and Fertility of Soils, 2020, 56, 959-972.	4.3	17
65	Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biology and Biochemistry, 2020, 148, 107904.	8.8	26
66	Improving N2O emission estimates with the global N2O database. Current Opinion in Environmental Sustainability, 2020, 47, 13-20.	6.3	27
67	Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Current Opinion in Environmental Sustainability, 2020, 47, 1-6.	6.3	19
68	Denitrification Is the Main Nitrous Oxide Source Process in Grassland Soils According to Quasi ontinuous Isotopocule Analysis and Biogeochemical Modeling. Global Biogeochemical Cycles, 2020, 34, e2019GB006505.	4.9	11
69	Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition, 2020, 123, 1239-1246.	2.3	35
70	Response of microbial community and net nitrogen turnover to modify climate change in Alpine meadow. Applied Soil Ecology, 2020, 152, 103553.	4.3	6
71	Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production. Soil Use and Management, 2020, 36, 439-448.	4.9	23
72	Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 2020, 363, 114156.	5.1	49

#	Article	IF	CITATIONS
73	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	3.3	21
74	Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland using the eddy covariance technique. Science of the Total Environment, 2020, 729, 138784.	8.0	9
75	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	3.3	18
76	Editorial Overview: Climate change, reactive nitrogen, food security and sustainable agriculture - the case of N2O. Current Opinion in Environmental Sustainability, 2020, 47, A1-A4.	6.3	3
77	An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4 and N2O. Environmental Pollution, 2020, 264, 114770.	7.5	34
78	Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type. Pedosphere, 2020, 30, 336-342.	4.0	15
79	Sweet potato (Ipomoea batatas) vine silage: a cost-effective supplement for milk production in smallholder dairy-farming systems of East Africa?. Animal Production Science, 2020, 60, 1087.	1.3	9
80	Tea-planted soils as global hotspots for N ₂ O emissions from croplands. Environmental Research Letters, 2020, 15, 104018.	5.2	23
81	Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems. Science of the Total Environment, 2019, 646, 1155-1163.	8.0	28
82	Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1325-1337.	2.2	10
83	Land Use, Not Stream Order, Controls N ₂ O Concentration and Flux in the Upper Mara River Basin, Kenya. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3491-3506.	3.0	35
84	Seasonal dynamics and profiles of soil NO concentrations in a temperate forest. Plant and Soil, 2019, 445, 335-348.	3.7	15
85	Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions. Biogeochemistry, 2019, 145, 47-61.	3.5	14
86	Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biology and Biochemistry, 2019, 138, 107576.	8.8	24
87	New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1464-1465.	7.1	14
88	Fertilizer nitrogen loss via N2 emission from calcareous soil following basal urea application of winter wheat. Atmospheric and Oceanic Science Letters, 2019, 12, 91-97.	1.3	3
89	Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals, 2019, 9, 210.	2.3	18
90	Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmospheric Environment, 2019, 212, 183-193.	4.1	66

#	Article	IF	CITATIONS
91	Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 272-273, 166-175.	4.8	19
92	Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar. Geoderma, 2019, 348, 12-20.	5.1	16
93	Constraining N cycling in the ecosystem model LandscapeDNDC with the stable isotope model SIMONE. Ecology, 2019, 100, e02675.	3.2	16
94	Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science, 2019, 59, 1136.	1.3	28
95	Projected changes in modified Thornthwaite climate zones over Southwest Asia using a CMIP5 multiâ€model ensemble. International Journal of Climatology, 2019, 39, 4575-4594.	3.5	18
96	Plant and soil effects on denitrification potential in agricultural soils. Plant and Soil, 2019, 439, 459-474.	3.7	33
97	Dinitrogen emissions: an overlooked key component of the N balance of montane grasslands. Biogeochemistry, 2019, 143, 15-30.	3.5	33
98	Effects of climate warming on carbon fluxes in grasslands—ÂA global metaâ€analysis. Global Change Biology, 2019, 25, 1839-1851.	9.5	103
99	Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region. Biogeochemistry, 2019, 143, 171-190.	3.5	44
100	Effects of feed intake level on efficiency of microbial protein synthesis and nitrogen balance in Boran steers consuming tropical poor-quality forage. Archives of Animal Nutrition, 2019, 73, 140-157.	1.8	18
101	Attribution of N ₂ O sources in a grassland soil with laser spectroscopy based isotopocule analysis. Biogeosciences, 2019, 16, 3247-3266.	3.3	36
102	Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environmental Pollution, 2019, 245, 694-701.	7.5	107
103	Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agriculture, Ecosystems and Environment, 2019, 270-271, 41-54.	5.3	36
104	Long-term grazing effects on soil-atmosphere exchanges of CO2, CH4 and N2O at different grasslands in Inner Mongolia: A soil core study. Ecological Indicators, 2019, 105, 316-328.	6.3	20
105	Temporal and spatial variability in the nutritive value of pasture vegetation and supplement feedstuffs for domestic ruminants in Western Kenya. Asian-Australasian Journal of Animal Sciences, 2019, 32, 637-647.	2.4	15
106	Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 976-990.	3.0	8
107	Land-use and abandonment alters methane and nitrous oxide fluxesÂinÂmountain grasslands. Science of the Total Environment, 2018, 628-629, 997-1008.	8.0	15
108	Using Highâ€Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments. Water Resources Research, 2018, 54, 1812-1830.	4.2	27

#	Article	IF	CITATIONS
109	A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems, 2018, 161, 72-80.	6.1	50
110	Greenhouse gas fluxes over managed grasslands in Central Europe. Global Change Biology, 2018, 24, 1843-1872.	9.5	63
111	Management intensity controls soil N2O fluxes in an Afromontane ecosystem. Science of the Total Environment, 2018, 624, 769-780.	8.0	22
112	Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology, 2018, 248, 386-396.	4.8	29
113	Effects of Climate Change on CH4 and N2O Fluxes from Temperate and Boreal Forest Soils. , 2018, , 11-27.		2
114	Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 2018, 121, 77-86.	8.8	22
115	Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 2018, 9, 1135.	12.8	98
116	Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya. Soil and Tillage Research, 2018, 176, 36-44.	5.6	41
117	Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya. Plant and Soil, 2018, 422, 527-539.	3.7	26
118	Towards a feasible and representative pan-African research infrastructure network for GHG observations. Environmental Research Letters, 2018, 13, 085003.	5.2	20
119	The TERENO Preâ€Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling. Vadose Zone Journal, 2018, 17, 1-17.	2.2	51
120	Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes From Tropical Pastures in Kenya. Global Biogeochemical Cycles, 2018, 32, 1589-1604.	4.9	40
121	Tradeâ€offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology, 2018, 24, 5919-5932.	9.5	273
122	Assessment of hydrological pathways in East African montane catchments under different land use. Hydrology and Earth System Sciences, 2018, 22, 4981-5000.	4.9	30
123	Greenhouse gas emissions from soil amended with agricultural residue biochars: Effects of feedstock type, production temperature and soil moisture. Biomass and Bioenergy, 2018, 117, 1-9.	5.7	44
124	Postfire nitrogen balance of Mediterranean shrublands: Direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. Global Change Biology, 2018, 24, 4505-4520.	9.5	29
125	How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework "targetCSAâ€. Agricultural Systems, 2017, 151, 234-245.	6.1	74
126	A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 2017, 23, 455-464.	9.5	151

#	Article	IF	CITATIONS
127	Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar shortâ€rotation coppice in southern Germany. GCB Bioenergy, 2017, 9, 613-626.	5.6	20
128	Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Scientific Reports, 2017, 7, 39855.	3.3	55
129	Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmospheric Environment, 2017, 152, 61-76.	4.1	21
130	Exploring impacts of vegetated buffer strips on nitrogen cycling using a spatially explicit hydro-biogeochemical modeling approach. Environmental Modelling and Software, 2017, 90, 55-67.	4.5	17
131	Straw return reduces yield-scaled N 2 O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Science of the Total Environment, 2017, 590-591, 174-185.	8.0	79
132	Warming from freezing soils. Nature Geoscience, 2017, 10, 248-249.	12.9	12
133	The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry, 2017, 105, 121-137.	8.8	259
134	Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Science of the Total Environment, 2017, 603-604, 519-532.	8.0	56
135	Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya. Biogeochemistry, 2017, 134, 95-114.	3.5	13
136	C and N stocks are not impacted by land use change from Brazilian Savanna (Cerrado) to agriculture despite changes in soil fertility and microbial abundances. Journal of Plant Nutrition and Soil Science, 2017, 180, 436-445.	1.9	8
137	Rejecting hydro-biogeochemical model structures by multi-criteria evaluation. Environmental Modelling and Software, 2017, 93, 1-12.	4.5	19
138	Nitrogen nutrition of native and introduced forest tree species in N-limited ecosystems of the Qinling Mountains, China. Trees - Structure and Function, 2017, 31, 1189-1202.	1.9	5
139	Spatial variability of soil N ₂ O and CO ₂ fluxes in different topographic positions in a tropical montane forest in Kenya. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 514-527.	3.0	46
140	Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China. Forest Ecology and Management, 2017, 389, 46-58.	3.2	36
141	Environmental impacts of bioenergy wood production from poplar shortâ€rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy, 2017, 9, 1207-1221.	5.6	38
142	Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution, 2017, 231, 929-941.	7.5	44
143	Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7, 11415.	3.3	36
144	Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017, 213, 186-193.	5.1	25

#	Article	IF	CITATIONS
145	Evaluation of new flux attribution methods for mapping N 2 O emissions at the landscape scale. Agriculture, Ecosystems and Environment, 2017, 247, 9-22.	5.3	4
146	Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system. Field Crops Research, 2017, 201, 52-59.	5.1	38
147	A metaâ€∎nalysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology, 2017, 23, 1338-1352.	9.5	148
148	Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes. Biogeosciences, 2017, 14, 187-202.	3.3	43
149	Soil Fertility Management in Sub-Saharan Africa. Sustainable Agriculture Reviews, 2017, , 205-231.	1.1	22
150	Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. Environmental Pollution, 2017, 229, 119-131.	7.5	31
151	Biogeochemische StoffkreislÄ u fe. , 2017, , 173-181.		1
152	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	3.3	29
153	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8
154	Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Global Change Biology, 2016, 22, 2963-2978.	9.5	68
155	Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat-maize cropping systems: A comprehensive case study of nitrogen cycling and balance. Agriculture, Ecosystems and Environment, 2016, 231, 1-14.	5.3	103
156	Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1568-1580.	3.0	49
157	Supplementation with Calliandra calothyrsus improves nitrogen retention in cattle fed low-protein diets. Animal Production Science, 2016, 56, 619.	1.3	10
158	Disentangling gross N2O production and consumption in soil. Scientific Reports, 2016, 6, 36517.	3.3	32
159	Cold season soil NO fluxes from a temperate forest: drivers and contribution to annual budgets. Environmental Research Letters, 2016, 11, 114012.	5.2	18
160	Methane and Nitrous Oxide Emissions from Cattle Excreta on an East African Grassland. Journal of Environmental Quality, 2016, 45, 1531-1539.	2.0	58
161	Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 2016, 5, .	3.9	107
162	How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?. Agriculture, Ecosystems and Environment, 2016, 224, 104-115.	5.3	27

#	Article	IF	CITATIONS
163	Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 2016, 22, 432-448.	9.5	129

164 Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

165	Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya. Geoderma, 2016, 274, 1-9.	5.1	32
166	The impact of management and climate on soil nitric oxide fluxes from arable land in the Southern Ukraine. Atmospheric Environment, 2016, 137, 113-126.	4.1	27
167	Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment. Journal of Arid Environments, 2016, 135, 50-63.	2.4	56
168	Introduction to the SAMPLES Approach. , 2016, , 1-13.		1
169	Soil organic matter dynamics after afforestation of mountain grasslands in both a Mediterranean and a temperate climate. Biogeochemistry, 2016, 131, 267-280.	3.5	9
170	Gross Nitrogen Turnover of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro, Tanzania. Ecosystems, 2016, 19, 1271-1288.	3.4	16
171	Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 2901-2920.	4.9	74
172	Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields. Atmospheric and Oceanic Science Letters, 2016, 9, 381-387.	1.3	4
173			
	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461.	18.8	588
174	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140.	18.8 8.0	588
174 175	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140. Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture. , 2016, , 15-36.	18.8 8.0	588 52 2
174 175 176	 Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140. Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture. , 2016, , 15-36. Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96. 	18.8	588 52 2 21
174 175 176 177	 Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140. Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture. , 2016, , 15-36. Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96. Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances, and Intensities to Whole Farms and Landscapes. , 2016, , 175-188. 	18.8	588 52 2 21 4
174 175 176 177 178	 Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140. Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture. , 2016, , 15-36. Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96. Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances, and Intensities to Whole Farms and Landscapes. , 2016, , 175-188. Sampling frequency affects estimates of annual nitrous oxide fluxes. Scientific Reports, 2015, 5, 15912. 	18.8 8.0 3.3	588 52 2 21 4 123
174 175 176 177 178 179	 Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461. A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140. Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture. , 2016, , 15-36. Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96. Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances, and Intensities to Whole Farms and Landscapes. , 2016, , 175-188. Sampling frequency affects estimates of annual nitrous oxide fluxes. Scientific Reports, 2015, 5, 15912. Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15, 13849-13893. 	18.8 8.0 3.3 4.9	588 52 2 21 4 123 168

#	Article	IF	CITATIONS
181	Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science, 2015, 178, 755-767.	1.9	17
182	Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences, 2015, 12, 4831-4840.	3.3	22
183	Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model "LandscapeDNDC― Forests, 2015, 6, 1779-1809.	2.1	18
184	More rice with less water – evaluation of yield and resource use efficiency in ground cover rice production system with transplanting. European Journal of Agronomy, 2015, 68, 13-21.	4.1	47
185	A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant and Soil, 2015, 386, 125-149.	3.7	52
186	Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems. Soil Biology and Biochemistry, 2015, 82, 44-51.	8.8	23
187	Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems, 2015, 101, 37-53.	2.2	74
188	Preface: Towards a full greenhouse gas balance of the biosphere. Biogeosciences, 2015, 12, 453-456.	3.3	5
189	Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: A 3-year field case study. Agriculture, Ecosystems and Environment, 2015, 212, 297-309.	5.3	69
190	Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils. Soil Biology and Biochemistry, 2015, 87, 67-77.	8.8	58
191	Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agricultural Systems, 2015, 140, 1-10.	6.1	32
192	A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biology and Biochemistry, 2015, 80, 92-117.	8.8	173
193	Effects of Short Term Bioturbation by Common Voles on Biogeochemical Soil Variables. PLoS ONE, 2015, 10, e0126011.	2.5	16
194	Simulation of Land Management Effects on Soil N2O Emissions Using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2015, , 2207-2231.		0
195	Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system. Biogeosciences, 2014, 11, 6221-6236.	3.3	47
196	N ₂ O, NO, N ₂ and CO ₂ emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores. Biogeosciences, 2014, 11, 6047-6065.	3.3	22
197	Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives. Environmental Research Letters, 2014, 9, 105009.	5.2	49
198	Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in southwest China. Plant and Soil, 2014, 383, 401-414.	3.7	21

#	Article	IF	CITATIONS
199	Reducing uncertainty in nitrogen budgets for African livestock systems. Environmental Research Letters, 2014, 9, 105008.	5.2	29
200	Agroforestry with N2-fixing trees: sustainable development's friend or foe?. Current Opinion in Environmental Sustainability, 2014, 6, 15-21.	6.3	82
201	Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology and Fertility of Soils, 2014, 50, 775-783.	4.3	53
202	Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant and Soil, 2014, 374, 977-991.	3.7	130
203	N2O and CH4 Emissions, and NO3 â^' Leaching on a Crop-Yield Basis from a Subtropical Rain-fed Wheat–Maize Rotation in Response to Different Types of Nitrogen Fertilizer. Ecosystems, 2014, 17, 286-301.	3.4	86
204	Snow cover and soil moisture controls of freeze–thaw-related soil gas fluxes from a typical semi-arid grassland soil: a laboratory experiment. Biology and Fertility of Soils, 2014, 50, 295-306.	4.3	32
205	Direct N2O emission from agricultural soils in Poland between 1960 and 2009. Regional Environmental Change, 2014, 14, 1073-1082.	2.9	1
206	The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai–Tibetan Plateau. Soil Biology and Biochemistry, 2014, 71, 105-112.	8.8	45
207	Inhibitory and side effects of acetylene (C2H2) and sodium chlorate (NaClO3) on gross nitrification, gross ammonification and soil-atmosphere exchange of N2O and CH4 in acidic to neutral montane grassland soil. European Journal of Soil Biology, 2014, 65, 7-14.	3.2	15
208	Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 2014, 9-10, 90-104.	6.3	170
209	N 2 O and NO emission from the Nyungwe tropical highland rainforest in Rwanda. Geoderma Regional, 2014, 2-3, 41-49.	2.1	6
210	Ground cover rice production systems are more adaptable in cold regions with high content of soil organic matter. Field Crops Research, 2014, 164, 74-81.	5.1	25
211	Soil Trace Gas Emissions and Climate Change. , 2014, , 325-334.		6
212	Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N2, N2O and NO. Plant and Soil, 2013, 363, 175-189.	3.7	60
213	LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape Ecology, 2013, 28, 615-636.	4.2	126
214	Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant and Soil, 2013, 362, 149-159.	3.7	60
215	Do water-saving ground cover rice production systems increase grain yields at regional scales?. Field Crops Research, 2013, 150, 19-28.	5.1	50
216	Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique. Chemosphere, 2013, 93, 2848-2853.	8.2	8

#	Article	IF	CITATIONS
217	Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 2013, 64, 141-149.	4.1	27
218	Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma, 2013, 192, 335-340.	5.1	90
219	Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. Journal of Arid Environments, 2013, 92, 98-101.	2.4	18
220	Comments on "A test of a fieldâ€based ¹⁵ Nâ€nitrous oxide pool dilution technique to measure gross N ₂ 0 production in soil†by Yang <i>etÂal</i> . (2011), <i>Global Change Biology</i> , 17, 3577–3588. Global Change Biology, 2013, 19, 133-135.	9.5	11
221	Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystems and Environment, 2013, 167, 23-32.	5.3	89
222	Biofuel production on the margins. Nature, 2013, 493, 483-484.	27.8	23
223	Improving efficiency of a statistical analysis of complex ecological models, when using the statistical software R by parallelising tasks with Rmpi. Ecological Informatics, 2013, 15, 53-57.	5.2	1
224	N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 2013, 83, 195-219.	5.4	105
225	The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130164.	4.0	1,114
226	Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes. Soil Biology and Biochemistry, 2013, 67, 20-23.	8.8	53
227	Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment, 2013, 79, 641-649.	4.1	88
228	Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130122.	4.0	1,788
229	Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems. Environmental Research Letters, 2013, 8, 021003.	5.2	42
230	Accuracy and precision of photoacoustic spectroscopy not guaranteed. Global Change Biology, 2013, 19, 3565-3567.	9.5	22
231	Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology. Environmental Research Letters, 2013, 8, 015030.	5.2	34
232	Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences, 2013, 10, 3205-3219.	3.3	177
233	Environmental change impacts on the C- and N-cycle of European forests: a model comparison study. Biogeosciences, 2013, 10, 1751-1773.	3.3	21
234	Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences, 2013, 10, 2193-2217.	3.3	66

#	Article	IF	CITATIONS
235	Eddy-covariance flux measurements with a weight-shift microlight aircraft. Atmospheric Measurement Techniques, 2012, 5, 1699-1717.	3.1	50
236	Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda. Biogeosciences, 2012, 9, 1451-1463.	3.3	19
237	Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 2012, 3, 1-18.	2.2	34
238	Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes. European Journal of Forest Research, 2012, 131, 1809-1831.	2.5	10
239	Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutrient Cycling in Agroecosystems, 2012, 93, 357-371.	2.2	50
240	Soil Carbon and Nitrogen Interactions and Biosphere-Atmosphere Exchange of Nitrous Oxide and Methane. , 2012, , 429-443.		7
241	Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 2012, 9, 423-437.	3.3	48
242	Parameter-induced uncertainty quantification of soil N ₂ O, NO and CO ₂ emission from Höglwald spruce forest (Germany) using the LandscapeDNDC model. Biogeosciences, 2012, 9, 3983-3998.	3.3	15
243	Decadal variability of soil CO ₂ , NO, N ₂ O, and CH ₄ fluxes at the HA¶glwald Forest, Germany. Biogeosciences, 2012, 9, 1741-1763.	3.3	77
244	Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environmental Pollution, 2012, 162, 361-368.	7.5	53
245	Soilâ€derived trace gas fluxes from different energy crops – results from a field experiment in <scp>S</scp> outhwest <scp>G</scp> ermany. GCB Bioenergy, 2012, 4, 289-301.	5.6	57
246	Biomass production potential from <i><scp>P</scp>opulus</i> short rotation systems in <scp>R</scp> omania. GCB Bioenergy, 2012, 4, 642-653.	5.6	53
247	Modeling N2O emissions from steppe in Inner Mongolia, China, with consideration of spring thaw and grazing intensity. Plant and Soil, 2012, 350, 297-310.	3.7	31
248	Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability, 2011, 3, 389-395.	6.3	138
249	Quantifying impacts of nitrogen use in European agriculture on global warming potential. Current Opinion in Environmental Sustainability, 2011, 3, 291-302.	6.3	34
250	Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 2011, 3, 281-290.	6.3	224
251	Selection of likelihood parameters for complex models determines the effectiveness of Bayesian calibration. Ecological Informatics, 2011, 6, 333-340.	5.2	9
252	Measurement of N ₂ , N ₂ O, NO, and CO ₂ Emissions from Soil with the Gas-Flow-Soil-Core Technique. Environmental Science & Technology, 2011, 45, 6066-6072.	10.0	62

#	Article	IF	CITATIONS
253	Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1440-1452.	4.8	75
254	A Bayesian framework for model calibration, comparison and analysis: Application to four models for the biogeochemistry of a Norway spruce forest. Agricultural and Forest Meteorology, 2011, 151, 1609-1621.	4.8	74
255	Measurements of Biosphere–Atmosphere Exchange of CH4 in Terrestrial Ecosystems. Methods in Enzymology, 2011, 495, 271-287.	1.0	23
256	Bioethanol production from sugarcane and emissions of greenhouse gases - known and unknowns. GCB Bioenergy, 2011, 3, 277-292.	5.6	89
257	Nitrogen as a threat to European soil quality. , 2011, , 495-510.		13
258	Nitrogen as a threat to the European greenhouse balance. , 2011, , 434-462.		58
259	Geographical variation in terrestrial nitrogen budgets across Europe. , 2011, , 317-344.		23
260	Corrigendum to "Measuring the 3-D wind vector with a weight-shift microlight aircraft" published in Atmos. Meas. Tech., 4, 1421–1444, 2011. Atmospheric Measurement Techniques, 2011, 4, 1515-1539.	3.1	8
261	Nitrogen processes in terrestrial ecosystems. , 2011, , 99-125.		77
262	Applicability of the soil gradient method for estimating soil–atmosphere CO ₂ , CH ₄ , and N ₂ O fluxes for steppe soils in Inner Mongolia. Journal of Plant Nutrition and Soil Science, 2011, 174, 359-372.	1.9	38
263	Nitrous oxide fluxes from a grain–legume crop (narrowâ€leafed lupin) grown in a semiarid climate. Global Change Biology, 2011, 17, 1153-1166.	9.5	82
264	Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 2011, 17, 2803-2816.	9.5	103
265	Greenhouse gas fluxes from an Australian subtropical cropland under longâ€ŧerm contrasting management regimes. Global Change Biology, 2011, 17, 3089-3101.	9.5	111
266	Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environmental Pollution, 2011, 159, 3204-3214.	7.5	54
267	Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. Environmental Pollution, 2011, 159, 2467-2475.	7.5	38
268	Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant and Soil, 2011, 340, 291-301.	3.7	32
269	Nitrogen dynamics at undisturbed and burned Mediterranean shrublands of Salento Peninsula, Southern Italy. Plant and Soil, 2011, 343, 5-15.	3.7	34
270	Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2011, 340, 127-139.	3.7	57

#	Article	IF	CITATIONS
271	Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant and Soil, 2011, 343, 139-160.	3.7	46
272	The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China. Plant and Soil, 2011, 340, 397-411.	3.7	26
273	Steppe ecosystems and climate and land-use changes—vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 2011, 340, 1-6.	3.7	22
274	Reactive nitrogen and greenhouse gas flux interactions in terrestrial ecosystems. Plant and Soil, 2011, 343, 1-3.	3.7	11
275	Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant and Soil, 2011, 346, 297-330.	3.7	35
276	An alternative modelling approach to predict emissions of N2O and NO from forest soils. European Journal of Forest Research, 2011, 130, 755-773.	2.5	7
277	A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal, 2011, 10, 955-973.	2.2	401
278	Measuring the 3-D wind vector with a weight-shift microlight aircraft. Atmospheric Measurement Techniques, 2011, 4, 1421-1444.	3.1	15
279	Soil nitrous oxide and methane fluxes are low from a bioenergy crop (canola) grown in a semiâ€arid climate. GCB Bioenergy, 2010, 2, 1-15.	5.6	45
280	Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests. Biogeochemistry, 2010, 97, 55-70.	3.5	30
281	Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model. Plant and Soil, 2010, 327, 493-517.	3.7	45
282	Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant and Soil, 2010, 327, 315-330.	3.7	100
283	Linking carbon and nitrogen mineralization with microbial responses to substrate availability — the DECONIT model. Plant and Soil, 2010, 328, 271-290.	3.7	22
284	Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 2010, 331, 341-359.	3.7	41
285	Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology and Biochemistry, 2010, 42, 773-787.	8.8	153
286	Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: shortâ€ŧerm responses following nitrate addition. European Journal of Soil Science, 2010, 61, 662-670.	3.9	36
287	Gross rates of ammonification and nitrification at a nitrogenâ€saturated spruce (<i>Picea abies</i>) Tj ETQq1 1 	0.784314	rgBT /Overloc
288	Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010,	27.8	254

464, 881-884. 288

#	Article	IF	CITATIONS
289	From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences, 2010, 7, 121-149.	3.3	84
290	Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event. Biogeosciences, 2010, 7, 1715-1727.	3.3	39
291	A new ¹⁵ N tracer method to determine N turnover and denitrification of <i>Pseudomonas stutzeri</i> . Isotopes in Environmental and Health Studies, 2010, 46, 409-421.	1.0	15
292	Soilâ€atmosphere exchange potential of NO and N ₂ O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freezeâ€thaw, and dryingâ€wetting events. Journal of Geophysical Research, 2010, 115, .	3.3	56
293	Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research, 2010, 115, .	3.3	23
294	Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese riceâ€wheat rotation ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	13
295	Environmental controls over soilâ€atmosphere exchange of N ₂ O, NO, and CO ₂ in a temperate Norway spruce forest. Global Biogeochemical Cycles, 2010, 24, .	4.9	81
296	Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 2009, 41, 2131-2140.	8.8	98
297	A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmospheric Environment, 2009, 43, 1392-1402.	4.1	79
298	Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. Atmospheric Environment, 2009, 43, 1888-1896.	4.1	73
299	Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 2009, 43, 3086-3095.	4.1	28
300	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	4.1	609
301	Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 2009, 93, 49-77.	3.5	529
302	The relationship between N2O, NO, and N2 fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin, Uzbekistan. Plant and Soil, 2009, 314, 273-283.	3.7	57
303	Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biology and Fertility of Soils, 2009, 45, 679-690.	4.3	28
304	Soil–atmosphere exchange of greenhouse gases in a <i>Eucalyptus marginata</i> woodland, a cloverâ€grass pasture, and <i>Pinus radiata</i> and <i>Eucalyptus globulus</i> plantations. Global Change Biology, 2009, 15, 425-440.	9.5	83
305	The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Plant Biology, 2009, 11, 643-649.	3.8	53
306	Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agriculture, Ecosystems and Environment, 2009, 133, 196-207.	5.3	91

#	Article	IF	CITATIONS
307	Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agriculture, Ecosystems and Environment, 2009, 133, 139-149.	5.3	104
308	Sheepfolds as "hotspots―of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture, Ecosystems and Environment, 2009, 134, 136-142.	5.3	12
309	Seasonal dynamic of gross nitrification and N2O emission at two tropical rainforest sites in Queensland, Australia. Plant and Soil, 2008, 309, 105-117.	3.7	52
310	Site specific and regional estimates of methane uptake by tropical rainforest soils in north eastern Australia. Plant and Soil, 2008, 309, 211-226.	3.7	24
311	Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant and Soil, 2008, 308, 105-117.	3.7	103
312	Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity. Plant and Soil, 2008, 309, 89-103.	3.7	33
313	Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 2008, 25, 748-756.	4.3	32
314	Soil-Atmosphere Exchange of N2O and NO in Near-Natural Savanna and Agricultural Land in Burkina Faso (W. Africa). Ecosystems, 2008, 11, 582-600.	3.4	78
315	Nitrous oxide emissions from a cropped soil in a semiâ€arid climate. Global Change Biology, 2008, 14, 177-192.	9.5	231
316	Simulation of NO and N2O emissions from a spruce forest during a freeze/thaw event using an N-flux submodel from the PnET-N-DNDC model integrated to CoupModel. Ecological Modelling, 2008, 216, 18-30.	2.5	49
317	Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biology and Biochemistry, 2008, 40, 2317-2323.	8.8	97
318	Quantifying net ecosystem carbon dioxide exchange of a shortâ€plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	49
319	Neural network treatment of 4 years long NO measurement in temperate spruce and beech forests. Journal of Geophysical Research, 2008, 113, .	3.3	5
320	Nitrogen dynamics of a mountain forest on dolomitic limestone – A scenario-based risk assessment. Environmental Pollution, 2008, 155, 512-516.	7.5	7
321	A global inventory of N ₂ O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 2007, 21, .	4.9	136
322	Soil-atmosphere exchange of N2O, CH4, and CO2and controlling environmental factors for tropical rain forest sites in western Kenya. Journal of Geophysical Research, 2007, 112, .	3.3	117
323	Modeling of Nitrogen Dynamics in an Austrian Alpine Forest Ecosystem on Calcareous Soils: A Scenario-Based Risk Assessment under Changing Environmental Conditions. Scientific World Journal, The, 2007, 7, 159-165.	2.1	5
324	Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 2007, 41, 5948-5958.	4.1	88

#	Article	IF	CITATIONS
325	Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 2007, 296, 209-226.	3.7	39
326	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67
327	Models in country scale carbon accounting of forest soils. Silva Fennica, 2007, 41, .	1.3	47
328	METHODS FOR MEASURING DENITRIFICATION: DIVERSE APPROACHES TO A DIFFICULT PROBLEM. , 2006, 16, 2091-2122.		757
329	Future scenarios of N2O and NO emissions from European forest soils. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	50
330	Production of NO and N2O by the Heterotrophic NitrifierAlcaligenes faecalis parafaecalisunder Varying Conditions of Oxygen Saturation. Geomicrobiology Journal, 2006, 23, 165-176.	2.0	22
331	Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and) Tj ETQq1 1 0.784314	rg <u>B</u> T/Ove	rlock 10 Tf 5(
332	Sources of nitrous oxide emitted from European forest soils. Biogeosciences, 2006, 3, 135-145.	3.3	130
333	N ₂ O, NO and CH ₄ exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences, 2006, 3, 121-133.	3.3	94
334	Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences, 2006, 3, 293-310.	3.3	79
335	Controls over N ₂ O, NO _x and CO ₂ fluxes in a calcareous mountain forest soil. Biogeosciences, 2006, 3, 383-395.	3.3	41
336	Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p Journal of Applied Microbiology, 2006, 101, 655-667.	3.1	96
337	Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Clobal Change Biology, 2006, 12, 1007-1020.	9.5	145
338	Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12, 1717-1732.	9.5	77
339	Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.)) Tj ETQq1 1	0.784314	rgBT /Overloc
340	Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 2006, 287, 161-176.	3.7	122
341	N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil, 2006, 289, 335-353.	3.7	136
342	Deposition and emissions of reactive nitrogen over European forests: A modelling study. Atmospheric Environment, 2006, 40, 5712-5726.	4.1	83

#	Article	IF	CITATIONS
343	MODELING DENITRIFICATION IN TERRESTRIAL AND AQUATIC ECOSYSTEMS AT REGIONAL SCALES. , 2006, 16, 2123-2142.		216
344	Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia. Global Change Biology, 2005, 11, 128-144.	9.5	103
345	Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany. Ecological Modelling, 2005, 188, 174-216.	2.5	86
346	Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biology and Biochemistry, 2005, 37, 1665-1674.	8.8	69
347	Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Climatic Change, 2005, 72, 321-338.	3.6	288
348	Local temperature optimum of N2O production rates in tropical rain forest soils of Australia. Soil Research, 2005, 43, 689.	1.1	13
349	Inventories of N ₂ O and NO emissions from European forest soils. Biogeosciences, 2005, 2, 353-375.	3.3	170
350	Use of measurements and models to improve the national IPCC based assessments of soil emissions of nitrous oxide. Journal of Integrative Environmental Sciences, 2005, 2, 217-233.	0.8	14
351	Significance of Forests as Sources for N2O and NO. NATO Science Series Series IV, Earth and Environmental Sciences, 2005, , 173-191.	0.3	10
352	Effects of Tree Species on C- and N-Cycling and Biosphere-Atmosphere Exchange of Trace Gases in Forests. , 2005, , 165-172.		4
353	Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant and Soil, 2004, 260, 311-329.	3.7	120
354	Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57
355	Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4in a tropical rain forest ecosystem. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	128
356	Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research, 2004, 109, .	3.3	276
357	Seasonal variability of N2O emissions and CH4uptake by tropical rainforest soils of Queensland, Australia. Clobal Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	123
358	Temperature and Moisture Effects on Nitrification Rates in Tropical Rainâ€Forest Soils. Soil Science Society of America Journal, 2002, 66, 834-844.	2.2	123
359	Nitrification activity in tropical rain forest soils of the Coastal Lowlands and Atherton Tablelands, Queensland, Australia. Journal of Plant Nutrition and Soil Science, 2002, 165, 682-685.	1.9	22
360	N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biology and Biochemistry, 2002, 34, 975-987.	8.8	194

#	Article	IF	CITATIONS
361	Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. Forest Ecology and Management, 2002, 167, 135-147.	3.2	8
362	Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. Forest Ecology and Management, 2002, 167, 123-134.	3.2	107
363	Exchange of N-gases at the Höglwald Forest – A summary. Plant and Soil, 2002, 240, 117-123.	3.7	89
364	Effect of tree distance on N2O and CH4-fluxes from soils in temperate forest ecosystems. Plant and Soil, 2002, 240, 91-103.	3.7	78
365	Development and application of a method for determination of net nitrification rates. Plant and Soil, 2002, 240, 57-65.	3.7	17
366	Title is missing!. Plant and Soil, 2002, 240, 77-90.	3.7	124
367	Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils. Plant and Soil, 2002, 240, 105-116.	3.7	148
368	CH4. Tree Physiology, 2002, , 141-156.	2.5	3
369	Temperature and Moisture Effects on Nitrification Rates in Tropical Rain-Forest Soils. Soil Science Society of America Journal, 2002, 66, 834.	2.2	50
370	Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. Journal of Geophysical Research, 2001, 106, 34155-34166.	3.3	107
371	Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology and Biochemistry, 2001, 33, 145-153.	8.8	130
372	Carbon dioxide and methane fluxes in forested and virgin blanket peatland in the West of Ireland. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 1387-1390.	0.1	0
373	N2O emission from tropical forest soils of Australia. Journal of Geophysical Research, 2000, 105, 26353-26367.	3.3	163
374	General CH4oxidation model and comparisons of CH4Oxidation in natural and managed systems. Global Biogeochemical Cycles, 2000, 14, 999-1019.	4.9	196
375	Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles, 2000, 14, 1061-1070.	4.9	99
376	A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation. Journal of Geophysical Research, 2000, 105, 4385-4398.	3.3	135
377	A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research, 2000, 105, 4369-4384.	3.3	486
378	Impact of changes in temperature and precipitation on N2O and NO emissions from forest soils. , 2000,		3

³⁷⁸, 165-171.

#	Article	IF	CITATIONS
379	Barometric Process Separation: New Method for Quantifying Nitrification, Denitrification, and Nitrous Oxide Sources in Soils. Soil Science Society of America Journal, 1999, 63, 117-128.	2.2	101
380	A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions. Journal of Geophysical Research, 1999, 104, 18487-18503.	3.3	219
381	Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmospheric Environment, 1998, 32, 559-564.	4.1	136
382	Title is missing!. Nutrient Cycling in Agroecosystems, 1997, 48, 79-90.	2.2	209
383	Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell and Environment, 1997, 20, 1175-1183.	5.7	232
384	Parameter-Induced Uncertainty Quantification of Regional N ₂ O Emissions and NO ₃ Leaching using the Biogeochemical Model LandscapeDNDC. Advances in Agricultural Systems Modeling, 0, , 149-171.	0.3	2