Klaus Butterbach-Bahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154973/publications.pdf

Version: 2024-02-01

384 papers 25,499 citations

79 h-index 133 g-index

411 all docs

411 docs citations

411 times ranked

17843 citing authors

#	Article	IF	CITATIONS
1	Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130122.	4.0	1,788
2	The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130164.	4.0	1,114
3	METHODS FOR MEASURING DENITRIFICATION: DIVERSE APPROACHES TO A DIFFICULT PROBLEM. , 2006, 16, 2091-2122.		757
4	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	4.1	609
5	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461.	18.8	588
6	Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 2009, 93, 49-77.	3. 5	529
7	A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research, 2000, 105, 4369-4384.	3. 3	486
8	A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal, 2011, 10, 955-973.	2.2	401
9	Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Climatic Change, 2005, 72, 321-338.	3.6	288
10	Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research, 2004, 109 , .	3.3	276
11	Tradeâ€offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology, 2018, 24, 5919-5932.	9.5	273
12	The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry, 2017, 105, 121-137.	8.8	259
13	Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010, 464, 881-884.	27.8	254
14	Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell and Environment, 1997, 20, 1175-1183.	5.7	232
15	Nitrous oxide emissions from a cropped soil in a semiâ€arid climate. Global Change Biology, 2008, 14, 177-192.	9.5	231
16	Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 2011, 3, 281-290.	6.3	224
17	A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions. Journal of Geophysical Research, 1999, 104, 18487-18503.	3.3	219
18	MODELING DENITRIFICATION IN TERRESTRIAL AND AQUATIC ECOSYSTEMS AT REGIONAL SCALES. , 2006, 16, 2123-2142.		216

#	Article	IF	Citations
19	Title is missing!. Nutrient Cycling in Agroecosystems, 1997, 48, 79-90.	2.2	209
20	Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and) Tj ETQq0 0 0 rgBT /O	verlogk 10) Tf 50 702 Td
21	General CH4oxidation model and comparisons of CH4Oxidation in natural and managed systems. Global Biogeochemical Cycles, 2000, 14, 999-1019.	4.9	196
22	N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biology and Biochemistry, 2002, 34, 975-987.	8.8	194
23	Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences, 2013, 10, 3205-3219.	3.3	177
24	A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biology and Biochemistry, 2015, 80, 92-117.	8.8	173
25	Inventories of N ₂ O and NO emissions from European forest soils. Biogeosciences, 2005, 2, 353-375.	3.3	170
26	Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 2014, 9-10, 90-104.	6.3	170
27	Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15, 13849-13893.	4.9	168
28	N2O emission from tropical forest soils of Australia. Journal of Geophysical Research, 2000, 105, 26353-26367.	3.3	163
29	Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology and Biochemistry, 2010, 42, 773-787.	8.8	153
30	A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 2017, 23, 455-464.	9.5	151
31	Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils. Plant and Soil, 2002, 240, 105-116.	3.7	148
32	A metaâ€analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology, 2017, 23, 1338-1352.	9.5	148
33	Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 2006, 12, 1007-1020.	9.5	145
34	Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability, 2011, 3, 389-395.	6.3	138
35	Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmospheric Environment, 1998, 32, 559-564.	4.1	136
36	N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil, 2006, 289, 335-353.	3.7	136

#	Article	IF	Citations
37	A global inventory of N ₂ O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 2007, 21, .	4.9	136
38	A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation. Journal of Geophysical Research, 2000, 105, 4385-4398.	3.3	135
39	Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology and Biochemistry, 2001, 33, 145-153.	8.8	130
40	Sources of nitrous oxide emitted from European forest soils. Biogeosciences, 2006, 3, 135-145.	3.3	130
41	Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant and Soil, 2014, 374, 977-991.	3.7	130
42	Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 2016, 22, 432-448.	9.5	129
43	Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4in a tropical rain forest ecosystem. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	128
44	LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape Ecology, 2013, 28, 615-636.	4.2	126
45	Title is missing!. Plant and Soil, 2002, 240, 77-90.	3.7	124
46	Temperature and Moisture Effects on Nitrification Rates in Tropical Rainâ€Forest Soils. Soil Science Society of America Journal, 2002, 66, 834-844.	2.2	123
47	Seasonal variability of N2O emissions and CH4uptake by tropical rainforest soils of Queensland, Australia. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	123
48	Sampling frequency affects estimates of annual nitrous oxide fluxes. Scientific Reports, 2015, 5, 15912.	3.3	123
49	Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 2006, 287, 161-176.	3.7	122
50	Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant and Soil, 2004, 260, 311-329.	3.7	120
51	Soil-atmosphere exchange of N2O, CH4, and CO2and controlling environmental factors for tropical rain forest sites in western Kenya. Journal of Geophysical Research, 2007, 112, .	3.3	117
52	Greenhouse gas fluxes from an Australian subtropical cropland under longâ€ŧerm contrasting management regimes. Global Change Biology, 2011, 17, 3089-3101.	9.5	111
53	Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. Journal of Geophysical Research, 2001, 106, 34155-34166.	3.3	107
54	Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. Forest Ecology and Management, 2002, 167, 123-134.	3.2	107

#	Article	IF	Citations
55	Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 2016, 5, .	3.9	107
56	Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environmental Pollution, 2019, 245, 694-701.	7.5	107
57	N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 2013, 83, 195-219.	5.4	105
58	Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agriculture, Ecosystems and Environment, 2009, 133, 139-149.	5 . 3	104
59	Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia. Global Change Biology, 2005, 11 , $128-144$.	9.5	103
60	Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant and Soil, 2008, 308, 105-117.	3.7	103
61	Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 2011, 17, 2803-2816.	9.5	103
62	Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat-maize cropping systems: A comprehensive case study of nitrogen cycling and balance. Agriculture, Ecosystems and Environment, 2016, 231, 1-14.	5. 3	103
63	Effects of climate warming on carbon fluxes in grasslands—ÂA global metaâ€analysis. Global Change Biology, 2019, 25, 1839-1851.	9.5	103
64	Barometric Process Separation: New Method for Quantifying Nitrification, Denitrification, and Nitrous Oxide Sources in Soils. Soil Science Society of America Journal, 1999, 63, 117-128.	2.2	101
65	Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant and Soil, 2010, 327, 315-330.	3.7	100
66	Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles, 2000, 14, 1061-1070.	4.9	99
67	Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 2009, 41, 2131-2140.	8.8	98
68	Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 2018, 9, 1135.	12.8	98
69	Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biology and Biochemistry, 2008, 40, 2317-2323.	8.8	97
70	Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p Journal of Applied Microbiology, 2006, 101, 655-667.	3.1	96
71	N ₂ O, NO and CH ₄ exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences, 2006, 3, 121-133.	3.3	94
72	Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agriculture, Ecosystems and Environment, 2009, 133, 196-207.	5. 3	91

#	Article	IF	CITATIONS
73	Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma, 2013, 192, 335-340.	5.1	90
74	Exchange of N-gases at the Höglwald Forest – A summary. Plant and Soil, 2002, 240, 117-123.	3.7	89
75	Bioethanol production from sugarcane and emissions of greenhouse gases - known and unknowns. GCB Bioenergy, 2011, 3, 277-292.	5. 6	89
76	Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystems and Environment, 2013, 167, 23-32.	5. 3	89
77	Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 2007, 41, 5948-5958.	4.1	88
78	Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment, 2013, 79, 641-649.	4.1	88
79	Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany. Ecological Modelling, 2005, 188, 174-216.	2.5	86
80	N2O and CH4 Emissions, and NO3 â^ Leaching on a Crop-Yield Basis from a Subtropical Rain-fed Wheat†Maize Rotation in Response to Different Types of Nitrogen Fertilizer. Ecosystems, 2014, 17, 286-301.	3.4	86
81	Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environmental Pollution, 2021, 272, 116372.	7.5	86
82	From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences, 2010, 7, 121-149.	3.3	84
83	Deposition and emissions of reactive nitrogen over European forests: A modelling study. Atmospheric Environment, 2006, 40, 5712-5726.	4.1	83
84	Soil–atmosphere exchange of greenhouse gases in a <i>Eucalyptus marginata</i> woodland, a cloverâ€grass pasture, and <i>Pinus radiata</i> and <i>Eucalyptus globulus</i> plantations. Global Change Biology, 2009, 15, 425-440.	9.5	83
85	Nitrous oxide fluxes from a grain–legume crop (narrowâ€leafed lupin) grown in a semiarid climate. Global Change Biology, 2011, 17, 1153-1166.	9.5	82
86	Agroforestry with N2-fixing trees: sustainable development's friend or foe?. Current Opinion in Environmental Sustainability, 2014, 6, 15-21.	6.3	82
87	Environmental controls over soilâ€atmosphere exchange of N ₂ 0, NO, and CO ₂ in a temperate Norway spruce forest. Global Biogeochemical Cycles, 2010, 24, .	4.9	81
88	Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences, 2006, 3, 293-310.	3.3	79
89	A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmospheric Environment, 2009, 43, 1392-1402.	4.1	79
90	Straw return reduces yield-scaled N 2 O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Science of the Total Environment, 2017, 590-591, 174-185.	8.0	79

#	Article	lF	CITATIONS
91	Effect of tree distance on N2O and CH4-fluxes from soils in temperate forest ecosystems. Plant and Soil, 2002, 240, 91-103.	3.7	78
92	Soil-Atmosphere Exchange of N2O and NO in Near-Natural Savanna and Agricultural Land in Burkina Faso (W. Africa). Ecosystems, 2008, 11, 582-600.	3.4	78
93	Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12, 1717-1732.	9.5	77
94	Nitrogen processes in terrestrial ecosystems. , 2011, , 99-125.		77
95	Decadal variability of soil CO ₂ , NO, N ₂ fluxes at the HA¶glwald Forest, Germany. Biogeosciences, 2012, 9, 1741-1763.	3.3	77
96	Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1440-1452.	4.8	75
97	A Bayesian framework for model calibration, comparison and analysis: Application to four models for the biogeochemistry of a Norway spruce forest. Agricultural and Forest Meteorology, 2011, 151, 1609-1621.	4.8	74
98	Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems, 2015, 101, 37-53.	2.2	74
99	Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 2901-2920.	4.9	74
100	How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework "targetCSA― Agricultural Systems, 2017, 151, 234-245.	6.1	74
101	Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 2021, 27, 2807-2821.	9.5	74
102	Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. Atmospheric Environment, 2009, 43, 1888-1896.	4.1	73
103	Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biology and Biochemistry, 2005, 37, 1665-1674.	8.8	69
104	Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: A 3-year field case study. Agriculture, Ecosystems and Environment, 2015, 212, 297-309.	5.3	69
105	Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Global Change Biology, 2016, 22, 2963-2978.	9.5	68
106	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67
107	Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences, 2013, 10, 2193-2217.	3.3	66
108	Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmospheric Environment, 2019, 212, 183-193.	4.1	66

#	Article	IF	CITATIONS
109	Greenhouse gas fluxes over managed grasslands in Central Europe. Global Change Biology, 2018, 24, 1843-1872.	9.5	63
110	Measurement of N ₂ , N ₂ O, NO, and CO ₂ Emissions from Soil with the Gas-Flow-Soil-Core Technique. Environmental Science & Environmental Science	10.0	62
111	Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N2, N2O and NO. Plant and Soil, 2013, 363, 175-189.	3.7	60
112	Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant and Soil, 2013, 362, 149-159.	3.7	60
113	Nitrogen as a threat to the European greenhouse balance. , 2011, , 434-462.		58
114	Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils. Soil Biology and Biochemistry, 2015, 87, 67-77.	8.8	58
115	Methane and Nitrous Oxide Emissions from Cattle Excreta on an East African Grassland. Journal of Environmental Quality, 2016, 45, 1531-1539.	2.0	58
116	Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57
117	The relationship between N2O, NO, and N2 fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin, Uzbekistan. Plant and Soil, 2009, 314, 273-283.	3.7	57
118	Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2011, 340, 127-139.	3.7	57
119	Soilâ€derived trace gas fluxes from different energy crops – results from a field experiment in <scp>S</scp> outhwest <scp>G</scp> ermany. GCB Bioenergy, 2012, 4, 289-301.	5. 6	57
120	Soilâ€atmosphere exchange potential of NO and N ₂ O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freezeâ€thaw, and dryingâ€wetting events. Journal of Geophysical Research, 2010, 115, .	3.3	56
121	Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment. Journal of Arid Environments, 2016, 135, 50-63.	2.4	56
122	Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Science of the Total Environment, 2017, 603-604, 519-532.	8.0	56
123	Estimating global terrestrial denitrification from measured N2O:(N2Oâ€⁻+â€⁻N2) product ratios. Current Opinion in Environmental Sustainability, 2020, 47, 72-80.	6.3	56
124	Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Scientific Reports, 2017, 7, 39855.	3.3	55
125	Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environmental Pollution, 2011, 159, 3204-3214.	7.5	54
126	The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Plant Biology, 2009, 11, 643-649.	3.8	53

#	Article	IF	CITATIONS
127	Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environmental Pollution, 2012, 162, 361-368.	7.5	53
128	Biomass production potential from <i><scp>P</scp>opulus</i> short rotation systems in <scp>R</scp> omania. GCB Bioenergy, 2012, 4, 642-653.	5.6	53
129	Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes. Soil Biology and Biochemistry, 2013, 67, 20-23.	8.8	53
130	Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology and Fertility of Soils, 2014, 50, 775-783.	4.3	53
131	Seasonal dynamic of gross nitrification and N2O emission at two tropical rainforest sites in Queensland, Australia. Plant and Soil, 2008, 309, 105-117.	3.7	52
132	A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant and Soil, 2015, 386, 125-149.	3.7	52
133	A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140.	8.0	52
134	The TERENO Preâ€Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling. Vadose Zone Journal, 2018, 17, 1-17.	2.2	51
135	Future scenarios of N2O and NO emissions from European forest soils. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	50
136	Eddy-covariance flux measurements with a weight-shift microlight aircraft. Atmospheric Measurement Techniques, 2012, 5, 1699-1717.	3.1	50
137	Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutrient Cycling in Agroecosystems, 2012, 93, 357-371.	2.2	50
138	Do water-saving ground cover rice production systems increase grain yields at regional scales?. Field Crops Research, 2013, 150, 19-28.	5.1	50
139	A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems, 2018, 161, 72-80.	6.1	50
140	Temperature and Moisture Effects on Nitrification Rates in Tropical Rain-Forest Soils. Soil Science Society of America Journal, 2002, 66, 834.	2.2	50
141	Simulation of NO and N2O emissions from a spruce forest during a freeze/thaw event using an N-flux submodel from the PnET-N-DNDC model integrated to CoupModel. Ecological Modelling, 2008, 216, 18-30.	2.5	49
142	Quantifying net ecosystem carbon dioxide exchange of a shortâ€plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	49
143	Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives. Environmental Research Letters, 2014, 9, 105009.	5.2	49
144	Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1568-1580.	3.0	49

#	Article	IF	CITATIONS
145	Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the topbut also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 2020, 363, 114156.	5.1	49
146	Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 2012, 9, 423-437.	3.3	48
147	Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system. Biogeosciences, 2014, 11, 6221-6236.	3.3	47
148	More rice with less water – evaluation of yield and resource use efficiency in ground cover rice production system with transplanting. European Journal of Agronomy, 2015, 68, 13-21.	4.1	47
149	Simultaneous quantification of N ₂ , NH ₃ and N ₂ O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26, 2292-2303.	9.5	47
150	Models in country scale carbon accounting of forest soils. Silva Fennica, 2007, 41, .	1.3	47
151	Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant and Soil, 2011, 343, 139-160.	3.7	46
152	Spatial variability of soil N ₂ O and CO ₂ fluxes in different topographic positions in a tropical montane forest in Kenya. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 514-527.	3.0	46
153	Soil nitrous oxide and methane fluxes are low from a bioenergy crop (canola) grown in a semiâ€arid climate. GCB Bioenergy, 2010, 2, 1-15.	5.6	45
154	Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model. Plant and Soil, 2010, 327, 493-517.	3.7	45
155	The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai–Tibetan Plateau. Soil Biology and Biochemistry, 2014, 71, 105-112.	8.8	45
156	Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution, 2017, 231, 929-941.	7.5	44
157	Greenhouse gas emissions from soil amended with agricultural residue biochars: Effects of feedstock type, production temperature and soil moisture. Biomass and Bioenergy, 2018, 117, 1-9.	5 . 7	44
158	Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region. Biogeochemistry, 2019, 143, 171-190.	3 . 5	44
159	Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.)) Tj ETQq1 1 0).7 <u>84</u> 314 r	rgДŢ /Overloc
160	Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes. Biogeosciences, 2017, 14, 187-202.	3.3	43
161	Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems. Environmental Research Letters, 2013, 8, 021003.	5.2	42
162	Controls over N ₂ O, NO _x and CO ₂ fluxes in a calcareous mountain forest soil. Biogeosciences, 2006, 3, 383-395.	3.3	41

#	Article	IF	CITATIONS
163	Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 2010, 331, 341-359.	3.7	41
164	Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya. Soil and Tillage Research, 2018, 176, 36-44.	5.6	41
165	Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes From Tropical Pastures in Kenya. Global Biogeochemical Cycles, 2018, 32, 1589-1604.	4.9	40
166	Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Current Opinion in Environmental Sustainability, 2020, 47, 95-105.	6.3	40
167	Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 2007, 296, 209-226.	3.7	39
168	Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event. Biogeosciences, 2010, 7, 1715-1727.	3.3	39
169	Applicability of the soil gradient method for estimating soil–atmosphere CO ₂ , CH ₄ , and N ₂ O fluxes for steppe soils in Inner Mongolia. Journal of Plant Nutrition and Soil Science, 2011, 174, 359-372.	1.9	38
170	Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. Environmental Pollution, 2011, 159, 2467-2475.	7. 5	38
171	Environmental impacts of bioenergy wood production from poplar shortâ€rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy, 2017, 9, 1207-1221.	5.6	38
172	Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system. Field Crops Research, 2017, 201, 52-59.	5.1	38
173	Heat stress will detrimentally impact future livestock production in East Africa. Nature Food, 2021, 2, 88-96.	14.0	38
174	Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth, 2021, 4, 1752-1763.	6.8	38
175	Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: shortâ€term responses following nitrate addition. European Journal of Soil Science, 2010, 61, 662-670.	3.9	36
176	Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China. Forest Ecology and Management, 2017, 389, 46-58.	3.2	36
177	Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7, 11415.	3.3	36
178	Attribution of N ₂ O sources in a grassland soil with laser spectroscopy based isotopocule analysis. Biogeosciences, 2019, 16, 3247-3266.	3.3	36
179	Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agriculture, Ecosystems and Environment, 2019, 270-271, 41-54.	5.3	36
180	Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environmental Pollution, 2021, 273, 116521.	7.5	36

#	Article	IF	CITATIONS
181	Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant and Soil, 2011, 346, 297-330.	3.7	35
182	Land Use, Not Stream Order, Controls N ₂ O Concentration and Flux in the Upper Mara River Basin, Kenya. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3491-3506.	3.0	35
183	Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition, 2020, 123, 1239-1246.	2.3	35
184	Quantifying impacts of nitrogen use in European agriculture on global warming potential. Current Opinion in Environmental Sustainability, 2011, 3, 291-302.	6.3	34
185	Nitrogen dynamics at undisturbed and burned Mediterranean shrublands of Salento Peninsula, Southern Italy. Plant and Soil, 2011, 343, 5-15.	3.7	34
186	Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 2012, 3, 1-18.	2.2	34
187	Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology. Environmental Research Letters, 2013, 8, 015030.	5.2	34
188	Influence of soil properties on N2O and CO2 emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry, 2020, 140, 107636.	8.8	34
189	An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4 and N2O. Environmental Pollution, 2020, 264, 114770.	7.5	34
190	Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity. Plant and Soil, 2008, 309, 89-103.	3.7	33
191	Plant and soil effects on denitrification potential in agricultural soils. Plant and Soil, 2019, 439, 459-474.	3.7	33
192	Dinitrogen emissions: an overlooked key component of the N balance of montane grasslands. Biogeochemistry, 2019, 143, 15-30.	3.5	33
193	The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 2020, 451, 325-343.	3.7	33
194	Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 2008, 25, 748-756.	4.3	32
195	Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant and Soil, 2011, 340, 291-301.	3.7	32
196	Snow cover and soil moisture controls of freezeâ€"thaw-related soil gas fluxes from a typical semi-arid grassland soil: a laboratory experiment. Biology and Fertility of Soils, 2014, 50, 295-306.	4.3	32
197	Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agricultural Systems, 2015, 140, 1-10.	6.1	32
198	Disentangling gross N2O production and consumption in soil. Scientific Reports, 2016, 6, 36517.	3.3	32

#	Article	IF	CITATIONS
199	Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya. Geoderma, 2016, 274, 1-9.	5.1	32
200	Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biology and Biochemistry, 2020, 151, 108058.	8.8	32
201	Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties. Plant and Soil, 2021, 467, 107-127.	3.7	32
202	Modeling N2O emissions from steppe in Inner Mongolia, China, with consideration of spring thaw and grazing intensity. Plant and Soil, 2012, 350, 297-310.	3.7	31
203	Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. Environmental Pollution, 2017, 229, 119-131.	7.5	31
204	Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests. Biogeochemistry, 2010, 97, 55-70.	3.5	30
205	Assessment of hydrological pathways in East African montane catchments under different land use. Hydrology and Earth System Sciences, 2018, 22, 4981-5000.	4.9	30
206	Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 2022, 812, 152532.	8.0	30
207	Reducing uncertainty in nitrogen budgets for African livestock systems. Environmental Research Letters, 2014, 9, 105008.	5.2	29
208	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	3.3	29
209	Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology, 2018, 248, 386-396.	4.8	29
210	Postfire nitrogen balance of Mediterranean shrublands: Direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. Global Change Biology, 2018, 24, 4505-4520.	9.5	29
211	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	5.2	29
212	A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 2022, 828, 154388.	8.0	29
213	Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 2009, 43, 3086-3095.	4.1	28
214	Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biology and Fertility of Soils, 2009, 45, 679-690.	4.3	28
215	Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems. Science of the Total Environment, 2019, 646, 1155-1163.	8.0	28
216	Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science, 2019, 59, 1136.	1.3	28

#	Article	IF	CITATIONS
217	Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	28
218	Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 2013, 64, 141-149.	4.1	27
219	How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?. Agriculture, Ecosystems and Environment, 2016, 224, 104-115.	5.3	27
220	The impact of management and climate on soil nitric oxide fluxes from arable land in the Southern Ukraine. Atmospheric Environment, 2016, 137, 113-126.	4.1	27
221	Using Highâ€Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments. Water Resources Research, 2018, 54, 1812-1830.	4.2	27
222	Livestock enclosures in drylands of Sub-Saharan Africa are overlooked hotspots of N2O emissions. Nature Communications, 2020, 11, 4644.	12.8	27
223	Improving N2O emission estimates with the global N2O database. Current Opinion in Environmental Sustainability, 2020, 47, 13-20.	6.3	27
224	Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agriculture, Ecosystems and Environment, 2021, 313, 107379.	5.3	27
225	The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China. Plant and Soil, 2011, 340, 397-411.	3.7	26
226	Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya. Plant and Soil, 2018, 422, 527-539.	3.7	26
227	Global Research Alliance N ₂ O chamber methodology guidelines: Considerations for automated flux measurement. Journal of Environmental Quality, 2020, 49, 1126-1140.	2.0	26
228	Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biology and Biochemistry, 2020, 148, 107904.	8.8	26
229	Gross rates of ammonification and nitrification at a nitrogenâ€saturated spruce (<i>Picea abies</i>) Tj ETQq1 1 0).784314 r	rgBT Overloc
230	Ground cover rice production systems are more adaptable in cold regions with high content of soil organic matter. Field Crops Research, 2014, 164, 74-81.	5.1	25
231	Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017, 213, 186-193.	5.1	25
232	Site specific and regional estimates of methane uptake by tropical rainforest soils in north eastern Australia. Plant and Soil, 2008, 309, 211-226.	3.7	24
233	Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biology and Biochemistry, 2019, 138, 107576.	8.8	24
234	Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research, 2010, 115, .	3.3	23

#	Article	IF	Citations
235	Measurements of Biosphere–Atmosphere Exchange of CH4 in Terrestrial Ecosystems. Methods in Enzymology, 2011, 495, 271-287.	1.0	23
236	Geographical variation in terrestrial nitrogen budgets across Europe., 2011,, 317-344.		23
237	Biofuel production on the margins. Nature, 2013, 493, 483-484.	27.8	23
238	Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems. Soil Biology and Biochemistry, 2015, 82, 44-51.	8.8	23
239	Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production. Soil Use and Management, 2020, 36, 439-448.	4.9	23
240	Tea-planted soils as global hotspots for N ₂ O emissions from croplands. Environmental Research Letters, 2020, 15, 104018.	5.2	23
241	Nitrification activity in tropical rain forest soils of the Coastal Lowlands and Atherton Tablelands, Queensland, Australia. Journal of Plant Nutrition and Soil Science, 2002, 165, 682-685.	1.9	22
242	Production of NO and N2O by the Heterotrophic NitrifierAlcaligenes faecalis parafaecalisunder Varying Conditions of Oxygen Saturation. Geomicrobiology Journal, 2006, 23, 165-176.	2.0	22
243	Linking carbon and nitrogen mineralization with microbial responses to substrate availability — the DECONIT model. Plant and Soil, 2010, 328, 271-290.	3.7	22
244	Steppe ecosystems and climate and land-use changesâ€"vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 2011, 340, 1-6.	3.7	22
245	Accuracy and precision of photoacoustic spectroscopy not guaranteed. Global Change Biology, 2013, 19, 3565-3567.	9.5	22
246	N ₂ O, NO, N ₂ and CO ₂ emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores. Biogeosciences, 2014, 11, 6047-6065.	3.3	22
247	Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences, 2015, 12, 4831-4840.	3.3	22
248	Management intensity controls soil N2O fluxes in an Afromontane ecosystem. Science of the Total Environment, 2018, 624, 769-780.	8.0	22
249	Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 2018, 121, 77-86.	8.8	22
250	Soil Fertility Management in Sub-Saharan Africa. Sustainable Agriculture Reviews, 2017, , 205-231.	1.1	22
251	Environmental change impacts on the C- and N-cycle of European forests: a model comparison study. Biogeosciences, 2013, 10, 1751-1773.	3.3	21
252	Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in southwest China. Plant and Soil, 2014, 383, 401-414.	3.7	21

#	Article	IF	CITATIONS
253	Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmospheric Environment, 2017, 152, 61-76.	4.1	21
254	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	3.3	21
255	Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96.		21
256	Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5
257	Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar shortâ€rotation coppice in southern Germany. GCB Bioenergy, 2017, 9, 613-626.	5.6	20
258	Towards a feasible and representative pan-African research infrastructure network for GHG observations. Environmental Research Letters, 2018, 13, 085003.	5.2	20
259	Long-term grazing effects on soil-atmosphere exchanges of CO2, CH4 and N2O at different grasslands in Inner Mongolia: A soil core study. Ecological Indicators, 2019, 105, 316-328.	6.3	20
260	From research to policy: optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions. Current Opinion in Environmental Sustainability, 2020, 47, 28-36.	6.3	20
261	Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda. Biogeosciences, 2012, 9, 1451-1463.	3.3	19
262	Rejecting hydro-biogeochemical model structures by multi-criteria evaluation. Environmental Modelling and Software, 2017, 93, 1-12.	4.5	19
263	Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 272-273, 166-175.	4.8	19
264	Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Current Opinion in Environmental Sustainability, 2020, 47, 1-6.	6.3	19
265	Elevated atmospheric CO ₂ reduces yieldâ€scaled N ₂ O fluxes from subtropical rice systems: Six siteâ€years field experiments. Global Change Biology, 2021, 27, 327-339.	9.5	19
266	Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. Journal of Arid Environments, 2013, 92, 98-101.	2.4	18
267	Nitrogen addition and mowing affect microbial nitrogen transformations in a <scp>C4</scp> grassland in northern <scp>C</scp> hina. European Journal of Soil Science, 2015, 66, 485-495.	3.9	18
268	Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model "LandscapeDNDC― Forests, 2015, 6, 1779-1809.	2.1	18
269	Cold season soil NO fluxes from a temperate forest: drivers and contribution to annual budgets. Environmental Research Letters, 2016, 11, 114012.	5.2	18
270	Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals, 2019, 9, 210.	2.3	18

#	Article	IF	Citations
271	Projected changes in modified Thornthwaite climate zones over Southwest Asia using a CMIP5 multiâ€model ensemble. International Journal of Climatology, 2019, 39, 4575-4594.	3.5	18
272	Effects of feed intake level on efficiency of microbial protein synthesis and nitrogen balance in Boran steers consuming tropical poor-quality forage. Archives of Animal Nutrition, 2019, 73, 140-157.	1.8	18
273	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	3.3	18
274	N2O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Science of the Total Environment, 2022, 806, 150883.	8.0	18
275	Development and application of a method for determination of net nitrification rates. Plant and Soil, 2002, 240, 57-65.	3.7	17
276	Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science, 2015, 178, 755-767.	1.9	17
277	Exploring impacts of vegetated buffer strips on nitrogen cycling using a spatially explicit hydro-biogeochemical modeling approach. Environmental Modelling and Software, 2017, 90, 55-67.	4.5	17
278	Dinitrogen (N2) pulse emissions during freeze-thaw cycles from montane grassland soil. Biology and Fertility of Soils, 2020, 56, 959-972.	4.3	17
279	Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya. Waste Management, 2021, 126, 209-220.	7.4	17
280	Sustainable livestock development in low- and middle-income countries: shedding light on evidence-based solutions. Environmental Research Letters, 2021, 16, 011001.	5.2	17
281	Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of the Total Environment, 2022, 836, 154932.	8.0	17
282	Gross Nitrogen Turnover of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro, Tanzania. Ecosystems, 2016, 19, 1271-1288.	3.4	16
283	Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar. Geoderma, 2019, 348, 12-20.	5.1	16
284	Constraining N cycling in the ecosystem model LandscapeDNDC with the stable isotope model SIMONE. Ecology, 2019, 100, e02675.	3.2	16
285	Anaerobic soil disinfestation with incorporation of straw and manure significantly increases greenhouse gases emission and reduces nitrate leaching while increasing leaching of dissolved organic N. Science of the Total Environment, 2021, 785, 147307.	8.0	16
286	Effects of Short Term Bioturbation by Common Voles on Biogeochemical Soil Variables. PLoS ONE, 2015, 10, e0126011.	2.5	16
287	A new ¹⁵ N tracer method to determine N turnover and denitrification of <i>Pseudomonas stutzeri</i> . Isotopes in Environmental and Health Studies, 2010, 46, 409-421.	1.0	15
288	Measuring the 3-D wind vector with a weight-shift microlight aircraft. Atmospheric Measurement Techniques, 2011, 4, 1421-1444.	3.1	15

#	Article	IF	CITATIONS
289	Parameter-induced uncertainty quantification of soil N ₂ O, NO and CO ₂ emission from Höglwald spruce forest (Germany) using the LandscapeDNDC model. Biogeosciences, 2012, 9, 3983-3998.	3.3	15
290	Inhibitory and side effects of acetylene (C2H2) and sodium chlorate (NaClO3) on gross nitrification, gross ammonification and soil-atmosphere exchange of N2O and CH4 in acidic to neutral montane grassland soil. European Journal of Soil Biology, 2014, 65, 7-14.	3.2	15
291	Land-use and abandonment alters methane and nitrous oxide fluxesÂinÂmountain grasslands. Science of the Total Environment, 2018, 628-629, 997-1008.	8.0	15
292	Seasonal dynamics and profiles of soil NO concentrations in a temperate forest. Plant and Soil, 2019, 445, 335-348.	3.7	15
293	Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type. Pedosphere, 2020, 30, 336-342.	4.0	15
294	Temporal and spatial variability in the nutritive value of pasture vegetation and supplement feedstuffs for domestic ruminants in Western Kenya. Asian-Australasian Journal of Animal Sciences, 2019, 32, 637-647.	2.4	15
295	Use of measurements and models to improve the national IPCC based assessments of soil emissions of nitrous oxide. Journal of Integrative Environmental Sciences, 2005, 2, 217-233.	0.8	14
296	Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions. Biogeochemistry, 2019, 145, 47-61.	3.5	14
297	New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1464-1465.	7.1	14
298	Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. European Journal of Agronomy, 2021, 128, 126306.	4.1	14
299	Local temperature optimum of N2O production rates in tropical rain forest soils of Australia. Soil Research, 2005, 43, 689.	1.1	13
300	Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese riceâ€wheat rotation ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	13
301	Nitrogen as a threat to European soil quality. , 2011, , 495-510.		13
302	Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya. Biogeochemistry, 2017, 134, 95-114.	3.5	13
303	Interactive effects of dung deposited onto urine patches on greenhouse gas fluxes from tropical pastures in Kenya. Science of the Total Environment, 2021, 761, 143184.	8.0	13
304	High Application Rates of Biochar to Mitigate N2O Emissions From a N-Fertilized Tropical Soil Under Warming Conditions. Frontiers in Environmental Science, 2021, 8, .	3.3	13
305	Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions—A laboratory-based measurement approach. Science of the Total Environment, 2022, 807, 151051.	8.0	13
306	Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems and Environment, 2022, 335, 108007.	5.3	13

#	Article	IF	CITATIONS
307	Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China $\hat{a}\in$ Effects of cultivation years, management, and shelter. Environmental Pollution, 2022, 307, 119494.	7.5	13
308	Sheepfolds as "hotspots―of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture, Ecosystems and Environment, 2009, 134, 136-142.	5. 3	12
309	Warming from freezing soils. Nature Geoscience, 2017, 10, 248-249.	12.9	12
310	Will dairy cattle production in West Africa be challenged by heat stress in the future?. Climatic Change, 2020, 161, 665-685.	3.6	12
311	Reactive nitrogen and greenhouse gas flux interactions in terrestrial ecosystems. Plant and Soil, 2011, 343, 1-3.	3.7	11
312	Comments on "A test of a fieldâ€based ¹⁵ Nâ€nitrous oxide pool dilution technique to measure gross N ₂ O production in soil†by Yang <i>etÂal</i> . (2011), <i>Global Change Biology</i> , 17, 3577–3588. Global Change Biology, 2013, 19, 133-135.	9.5	11
313	Denitrification Is the Main Nitrous Oxide Source Process in Grassland Soils According to Quasiâ€Continuous Isotopocule Analysis and Biogeochemical Modeling. Global Biogeochemical Cycles, 2020, 34, e2019GB006505.	4.9	11
314	Soil clay minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane landscapes. Soil Biology and Biochemistry, 2022, 168, 108612.	8.8	11
315	Basinâ€scale estimates of greenhouse gas emissions from the Mara River, Kenya: Importance of discharge, stream size, and land use/land cover. Limnology and Oceanography, 2022, 67, 1776-1793.	3.1	11
316	Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes. European Journal of Forest Research, 2012, 131, 1809-1831.	2.5	10
317	Supplementation with Calliandra calothyrsus improves nitrogen retention in cattle fed low-protein diets. Animal Production Science, 2016, 56, 619.	1.3	10
318	Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1325-1337.	2.2	10
319	Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems and Environment, 2021, 322, 107637.	5. 3	10
320	Significance of Forests as Sources for N2O and NO. NATO Science Series Series IV, Earth and Environmental Sciences, 2005, , 173-191.	0.3	10
321	A synthesis of nitric oxide emissions across global fertilized croplands from cropâ€specific emission factors. Global Change Biology, 2022, 28, 4395-4408.	9.5	10
322	Selection of likelihood parameters for complex models determines the effectiveness of Bayesian calibration. Ecological Informatics, 2011, 6, 333-340.	5 . 2	9
323	Soil organic matter dynamics after afforestation of mountain grasslands in both a Mediterranean and a temperate climate. Biogeochemistry, 2016, 131, 267-280.	3 . 5	9
324	Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland using the eddy covariance technique. Science of the Total Environment, 2020, 729, 138784.	8.0	9

#	Article	IF	CITATIONS
325	Soil type affects not only magnitude but also thermal sensitivity of N2O emissions in subtropical mountain area. Science of the Total Environment, 2021, 797, 149127.	8.0	9
326	Sweet potato (Ipomoea batatas) vine silage: a cost-effective supplement for milk production in smallholder dairy-farming systems of East Africa?. Animal Production Science, 2020, 60, 1087.	1.3	9
327	Impact of anaerobic soil disinfestation on seasonal N2O emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Science of the Total Environment, 2022, 830, 154673.	8.0	9
328	Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. Forest Ecology and Management, 2002, 167, 135-147.	3.2	8
329	Corrigendum to "Measuring the 3-D wind vector with a weight-shift microlight aircraft" published in Atmos. Meas. Tech., 4, 1421–1444, 2011. Atmospheric Measurement Techniques, 2011, 4, 1515-1539.	3.1	8
330	Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique. Chemosphere, 2013, 93, 2848-2853.	8.2	8
331	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8
332	C and N stocks are not impacted by land use change from Brazilian Savanna (Cerrado) to agriculture despite changes in soil fertility and microbial abundances. Journal of Plant Nutrition and Soil Science, 2017, 180, 436-445.	1.9	8
333	Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 976-990.	3.0	8
334	Isotopic Techniques to Measure N2O, N2 and Their Sources. , 2021, , 213-301.		8
335	Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability and moisture level. Plant and Soil, 2021, 466, 121-138.	3.7	8
336	Improving soil respiration while maintaining soil C stocks in sunken plastic greenhouse vegetable production systems – Advantages of straw application and drip fertigation. Agriculture, Ecosystems and Environment, 2021, 316, 107464.	5.3	8
337	Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal, 2022, 16, 100445.	3.3	8
338	Nitrogen dynamics of a mountain forest on dolomitic limestone $\hat{a} \in \text{``A scenario-based risk assessment.}$ Environmental Pollution, 2008, 155, 512-516.	7.5	7
339	An alternative modelling approach to predict emissions of N2O and NO from forest soils. European Journal of Forest Research, 2011, 130, 755-773.	2.5	7
340	Soil Carbon and Nitrogen Interactions and Biosphere-Atmosphere Exchange of Nitrous Oxide and Methane., 2012,, 429-443.		7
341	Nitrogen cycling in pastoral livestock systems in Subâ€Saharan Africa: knowns and unknowns. Ecological Applications, 2021, 31, e02368.	3.8	7
342	Climate Change Can Accelerate Depletion of Montane Grassland C Stocks. Global Biogeochemical Cycles, 2021, 35, e2020GB006792.	4.9	7

#	Article	IF	CITATIONS
343	N 2 O and NO emission from the Nyungwe tropical highland rainforest in Rwanda. Geoderma Regional, 2014, 2-3, 41-49.	2.1	6
344	Response of microbial community and net nitrogen turnover to modify climate change in Alpine meadow. Applied Soil Ecology, 2020, 152, 103553.	4.3	6
345	Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals, 2021, 11, 564.	2.3	6
346	Soil Trace Gas Emissions and Climate Change. , 2014, , 325-334.		6
347	Effects of slurry acidification on soil N ₂ O fluxes and denitrification. Journal of Plant Nutrition and Soil Science, 2021, 184, 696-708.	1.9	6
348	The potential importance of soil denitrification as a major N loss pathway in intensive greenhouse vegetable production systems. Plant and Soil, 2022, 471, 157-174.	3.7	6
349	Modeling of Nitrogen Dynamics in an Austrian Alpine Forest Ecosystem on Calcareous Soils: A Scenario-Based Risk Assessment under Changing Environmental Conditions. Scientific World Journal, The, 2007, 7, 159-165.	2.1	5
350	Neural network treatment of 4 years long NO measurement in temperate spruce and beech forests. Journal of Geophysical Research, 2008, 113, .	3.3	5
351	Preface: Towards a full greenhouse gas balance of the biosphere. Biogeosciences, 2015, 12, 453-456.	3.3	5
352	Nitrogen nutrition of native and introduced forest tree species in N-limited ecosystems of the Qinling Mountains, China. Trees - Structure and Function, 2017, 31, 1189-1202.	1.9	5
353	Calculation of new enteric methane emission factors for small ruminants in western Kenya highlights the heterogeneity of smallholder production systems. Animal Production Science, 2021, 61, 602.	1.3	5
354	Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Scientific Reports, 2021, 11, 22094.	3.3	5
355	Greenhouse Gas Mitigation Potential of Alternate Wetting and Drying for Rice Production at National Scale—A Modeling Case Study for the Philippines. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
356	Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields. Atmospheric and Oceanic Science Letters, 2016, 9, 381-387.	1.3	4
357	Evaluation of new flux attribution methods for mapping N 2 O emissions at the landscape scale. Agriculture, Ecosystems and Environment, 2017, 247, 9-22.	5.3	4
358	An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology, 2021, 308-309, 108570.	4.8	4
359	Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances, and Intensities to Whole Farms and Landscapes. , 2016, , 175-188.		4
360	Effects of Tree Species on C- and N-Cycling and Biosphere-Atmosphere Exchange of Trace Gases in Forests., 2005,, 165-172.		4

#	Article	IF	CITATIONS
361	Fertilizer nitrogen loss via N2 emission from calcareous soil following basal urea application of winter wheat. Atmospheric and Oceanic Science Letters, 2019, 12, 91-97.	1.3	3
362	Methodology for Measuring Greenhouse Gas Emissions from Agricultural Soils Using Non-isotopic Techniques. , 2021 , , $11-108$.		3
363	Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones. Geoscientific Model Development, 2021, 14, 3789-3812.	3.6	3
364	Soil N2O emission from organic and conventional cotton farming in Northern Tanzania. Science of the Total Environment, 2021, 785, 147301.	8.0	3
365	Impact of changes in temperature and precipitation on N2O and NO emissions from forest soils., 2000, , 165-171.		3
366	CH4. Tree Physiology, 2002, , 141-156.	2.5	3
367	Editorial Overview: Climate change, reactive nitrogen, food security and sustainable agriculture - the case of N2O. Current Opinion in Environmental Sustainability, 2020, 47, A1-A4.	6.3	3
368	Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	3
369	Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery. Remote Sensing of Environment, 2022, 279, 113110.	11.0	3
370	Increasing the Environmental Sustainability of Greenhouse Vegetable Production by Combining Biochar Application and Drip Fertigation—Effects on Soil N2O Emissions and Carbon Sequestrations. Agronomy, 2022, 12, 1661.	3.0	3
371	Parameter-Induced Uncertainty Quantification of Regional N ₂ O Emissions and NO ₃ Leaching using the Biogeochemical Model LandscapeDNDC. Advances in Agricultural Systems Modeling, 0, , 149-171.	0.3	2
372	Effects of Climate Change on CH4 and N2O Fluxes from Temperate and Boreal Forest Soils. , 2018, , 11-27.		2
373	Greenhouse Gases from Agriculture. , 2021, , 1-10.		2
374	Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture., 2016,, 15-36.		2
375	Improving efficiency of a statistical analysis of complex ecological models, when using the statistical software R by parallelising tasks with Rmpi. Ecological Informatics, 2013, 15, 53-57.	5.2	1
376	Direct N2O emission from agricultural soils in Poland between 1960 and 2009. Regional Environmental Change, 2014, 14, 1073-1082.	2.9	1
377	Introduction to the SAMPLES Approach. , 2016, , 1-13.		1
378	Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions., 2021, , 109-139.		1

#	Article	IF	CITATIONS
379	Effect of vole bioturbation on N2O, NO, NH3, CH4 and CO2 fluxes of slurry fertilized and non-fertilized montane grassland soils in Southern Germany. Science of the Total Environment, 2021, 800, 149597.	8.0	1
380	Biogeochemische StoffkreislÄ u fe. , 2017, , 173-181.		1
381	How to Improve Cumulative Methane and Nitrous Oxide Flux Estimations of the Nonâ€Steadyâ€State Chamber Method?. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
382	Carbon dioxide and methane fluxes in forested and virgin blanket peatland in the West of Ireland. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 1387-1390.	0.1	0
383	Methane Production in Ruminant Animals. , 2021, , 177-211.		0
384	Simulation of Land Management Effects on Soil N2O Emissions Using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2015, , 2207-2231.		0