
Russell W Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science, 2013, 341, 1246-1249.	12.6	1,223
2	Oligosaccharins—oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology, 1992, 2, 181-198.	2.5	301
3	Differential Induction of the Toll-Like Receptor 4-MyD88-Dependent and -Independent Signaling Pathways by Endotoxins. Infection and Immunity, 2005, 73, 2940-2950.	2.2	201
4	Structural Characterization of the Pseudomonas aeruginosa 1244 Pilin Glycan. Journal of Biological Chemistry, 2001, 276, 26479-26485.	3.4	179
5	Neisseria meningitidis Lipooligosaccharide Structure-Dependent Activation of the Macrophage CD14/Toll-Like Receptor 4 Pathway. Infection and Immunity, 2004, 72, 371-380.	2.2	144
6	Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Molecular Microbiology, 2001, 39, 379-392.	2.5	139
7	A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 2006, 59, 1704-1713.	2.5	135
8	Host-Symbiont Interactions. Plant Physiology, 1978, 62, 912-917.	4.8	125
9	A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Molecular Microbiology, 1995, 17, 1167-1175.	2.5	125
10	The Biosynthesis of Rhizobial Lipo-Oligosaccharide Nodulation Single Molecules. Molecular Plant-Microbe Interactions, 1994, 7, 684.	2.6	121
11	Conditional Requirement for Exopolysaccharide in the <i>Mesorhizobium–Lotus</i> Symbiosis. Molecular Plant-Microbe Interactions, 2013, 26, 319-329.	2.6	117
12	Characterization of Genes Involved in Biosynthesis of a Novel Antibiotic from <i>Burkholderia cepacia</i> BC11 and Their Role in Biological Control of <i>Rhizoctonia solani</i> . Applied and Environmental Microbiology, 1998, 64, 3939-3947.	3.1	110
13	Identification of an Orphan Response Regulator Required for the Virulence of Francisella spp. and Transcription of Pathogenicity Island Genes. Infection and Immunity, 2007, 75, 3305-3314.	2.2	108
14	Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14446-14451.	7.1	105
15	Moraxella catarrhalis Bacterium without Endotoxin, a Potential Vaccine Candidate. Infection and Immunity, 2005, 73, 7569-7577.	2.2	104
16	Phosphoethanolamine Substitution of Lipid A and Resistance of <i>Neisseria gonorrhoeae</i> to Cationic Antimicrobial Peptides and Complement-Mediated Killing by Normal Human Serum. Infection and Immunity, 2009, 77, 1112-1120.	2.2	102
17	The Structure of the Neisserial Lipooligosaccharide Phosphoethanolamine Transferase A (LptA) Required for Resistance to Polymyxin. Journal of Molecular Biology, 2013, 425, 3389-3402.	4.2	101
18	The Structures of the Lipopolysaccharides from Rhizobium etli Strains CE358 and CE359. Journal of Biological Chemistry, 1998, 273, 2747-2757.	3.4	99

#	Article	IF	CITATIONS
19	Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841. FEMS Microbiology Ecology, 2010, 71, 327-340.	2.7	97
20	Novel <i>rkp</i> Gene Clusters of <i>Sinorhizobium meliloti</i> Involved in Capsular Polysaccharide Production and Invasion of the Symbiotic Nodule: the <i>rkpK</i> Gene Encodes a UDP-Glucose Dehydrogenase. Journal of Bacteriology, 1998, 180, 5426-5431.	2.2	81
21	The Structure of the Major Cell Wall Polysaccharide of Bacillus anthracis Is Species-specific. Journal of Biological Chemistry, 2006, 281, 27932-27941.	3.4	80
22	Synthesis and Antigenic Analysis of the BclA Glycoprotein Oligosaccharide from theBacillus anthracis Exosporium. Chemistry - A European Journal, 2006, 12, 9136-9149.	3.3	78
23	Reconstitution of O-Specific Lipopolysaccharide Expression in Burkholderia cenocepacia Strain J2315, Which Is Associated with Transmissible Infections in Patients with Cystic Fibrosis. Journal of Bacteriology, 2005, 187, 1324-1333.	2.2	77
24	The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Molecular Microbiology, 1993, 8, 1083-1094.	2.5	76
25	Endotoxin of Neisseria meningitidis Composed Only of Intact Lipid A: Inactivation of the Meningococcal 3-Deoxy-d-Manno-Octulosonic Acid Transferase. Journal of Bacteriology, 2002, 184, 2379-2388.	2.2	76
26	Structural Characterization of the O-antigenic Polysaccharide of the Lipopolysaccharide from Rhizobium etli Strain CE3. Journal of Biological Chemistry, 2000, 275, 18851-18863.	3.4	75
27	Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Molecular Microbiology, 2004, 52, 485-500.	2.5	74
28	A Special Acyl Carrier Protein for Transferring Long Hydroxylated Fatty Acids to Lipid A in Rhizobium. Journal of Biological Chemistry, 1996, 271, 32126-32136.	3.4	68
29	Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydrate Research, 1999, 315, 273-285.	2.3	65
30	Exo-Oligosaccharides of Rhizobium sp. Strain NGR234 Are Required for Symbiosis with Various Legumes. Journal of Bacteriology, 2006, 188, 6168-6178.	2.2	65
31	A Rhizobium mutant incapable of nodulation and normal polysaccharide secretion. Nature, 1978, 271, 240-242.	27.8	61
32	Lipopolysaccharide Core Structures in Rhizobium etli and Mutants Deficient in O-Antigen. Journal of Biological Chemistry, 1995, 270, 11783-11788.	3.4	61
33	Lipopolysaccharides Trigger Two Successive Bursts of Reactive Oxygen Species at Distinct Cellular Locations. Plant Physiology, 2018, 176, 2543-2556.	4.8	60
34	Involvement of exo5 in Production of Surface Polysaccharides in Rhizobium leguminosarum and Its Role in Nodulation of Vicia sativa subsp. nigra. Journal of Bacteriology, 2004, 186, 6617-6625.	2.2	59
35	Translocation and Surface Expression of Lipidated Serogroup B Capsular Polysaccharide in Neisseria meningitidis. Infection and Immunity, 2005, 73, 1491-1505.	2.2	57
36	Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp. fijiensis originating from a deep-sea hydrothermal vent. Carbohydrate Research, 1998, 312, 53-59.	2.3	56

#	Article	IF	CITATIONS
37	Varying the Abundance of O Antigen inRhizobium etli and Its Effect on Symbiosis withPhaseolus vulgaris. Journal of Bacteriology, 2000, 182, 5317-5324.	2.2	56
38	KpsF Is the Arabinose-5-phosphate Isomerase Required for 3-Deoxy-d-manno-octulosonic Acid Biosynthesis and for Both Lipooligosaccharide Assembly and Capsular Polysaccharide Expression in Neisseria meningitidis. Journal of Biological Chemistry, 2002, 277, 24103-24113.	3.4	56
39	Lipid A's Structure Mediates Neisseria gonorrhoeae Fitness during Experimental Infection of Mice and Men. MBio, 2013, 4, e00892-13.	4.1	56
40	A core oligosaccharide component from then lipopolysaccharide of Rhizobium trifolii ANU843. Carbohydrate Research, 1988, 176, 127-135.	2.3	52
41	The MisR/MisS Two-component Regulatory System Influences Inner Core Structure and Immunotype of Lipooligosaccharide in Neisseria meningitidis. Journal of Biological Chemistry, 2004, 279, 35053-35062.	3.4	50
42	The lipooligosaccharide (LOS) of Neisseria meningitidis Serogroup B Strain NMB contains L2, L3, and novel oligosaccharides, and lacks the lipid-A 4′-phosphate substituent. Carbohydrate Research, 1998, 307, 311-324.	2.3	49
43	A Rhizobium leguminosarum Lipopolysaccharide Lipid-A Mutant Induces Nitrogen-Fixing Nodules with Delayed and Defective Bacteroid Formation. Molecular Plant-Microbe Interactions, 2004, 17, 283-291.	2.6	48
44	Inner core assembly and structure of the lipooligosaccharide of Neisseria meningitidis: capacity of strain NMB to express all known immunotype epitopes. Glycobiology, 2005, 15, 409-419.	2.5	47
45	The Neisseria meningitidis Serogroup A Capsular Polysaccharide O-3 and O-4 Acetyltransferase. Journal of Biological Chemistry, 2004, 279, 42765-42773.	3.4	46
46	Structural Characterization of a K-antigen Capsular Polysaccharide Essential for Normal Symbiotic Infection in Rhizobium sp. NGR234. Journal of Biological Chemistry, 2006, 281, 28981-28992.	3.4	46
47	Cell Wall Carbohydrate Compositions of Strains from the <i>Bacillus cereus</i> Group of Species Correlate with Phylogenetic Relatedness. Journal of Bacteriology, 2008, 190, 112-121.	2.2	45
48	Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Molecular Microbiology, 1999, 32, 942-952.	2.5	43
49	A Rhizobium leguminosarum AcpXL Mutant Produces Lipopolysaccharide Lacking 27-Hydroxyoctacosanoic Acid. Journal of Bacteriology, 2003, 185, 1841-1850.	2.2	43
50	Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684. Glycobiology, 2012, 22, 1103-1117.	2.5	42
51	Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis. Glycobiology, 2011, 21, 934-948.	2.5	41
52	The Isolation and Partial Characterization of the Lipopolysaccharides from Several Rhizobium trifolii Mutants Affected in Root Hair Infection. Plant Physiology, 1987, 84, 421-427.	4.8	40
53	The structure of the lipopolysaccharide from a galU mutant of Pseudomonas aeruginosa serogroup-O11. Carbohydrate Research, 2005, 340, 2761-2772.	2.3	38
54	Phosphoethanolamine Decoration of Neisseria gonorrhoeae Lipid A Plays a Dual Immunostimulatory and Protective Role during Experimental Genital Tract Infection. Infection and Immunity, 2014, 82, 2170-2179.	2.2	38

#	Article	IF	CITATIONS
55	Rhizobium etli CE3 Bacteroid Lipopolysaccharides Are Structurally Similar but Not Identical to Those Produced by Cultured CE3 Bacteria. Journal of Biological Chemistry, 2007, 282, 17101-17113.	3.4	37
56	The structures of the lipopolysaccharide core components from rhizobium leguminosarum biovar phaseoli CE3 and two of its symbiotic mutants, CE109 and CE309. Carbohydrate Research, 1989, 195, 101-110.	2.3	35
57	The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules. Carbohydrate Research, 1995, 269, 303-317.	2.3	35
58	The Structure of the Colony Migration Factor from PathogenicProteus mirabilis. Journal of Biological Chemistry, 1999, 274, 22993-22998.	3.4	35
59	Plants interact with microbial polysaccharides. Journal of Supramolecular Structure, 1977, 6, 599-616.	2.3	33
60	Genetic Locus and Structural Characterization of the Biochemical Defect in the O-Antigenic Polysaccharide of the Symbiotically Deficient Rhizobium etli Mutant, CE166. Journal of Biological Chemistry, 2003, 278, 51347-51359.	3.4	33
61	O-Acetylation of the Terminal N-Acetylglucosamine of the Lipooligosaccharide Inner Core in Neisseria meningitidis. Journal of Biological Chemistry, 2006, 281, 19939-19948.	3.4	33
62	Structural Elucidation of the Nonclassical Secondary Cell Wall Polysaccharide from Bacillus cereus ATCC 10987. Journal of Biological Chemistry, 2008, 283, 29812-29821.	3.4	33
63	Phosphoglucomutase of <i>Yersinia pestis</i> Is Required for Autoaggregation and Polymyxin B Resistance. Infection and Immunity, 2010, 78, 1163-1175.	2.2	33
64	Rhizobium Sin-1 Lipopolysaccharide (LPS) Prevents Enteric LPS-induced Cytokine Production. Journal of Biological Chemistry, 2002, 277, 41811-41816.	3.4	32
65	Structures of Exopolysaccharides Involved in Receptor-mediated Perception of Mesorhizobium loti by Lotus japonicus. Journal of Biological Chemistry, 2016, 291, 20946-20961.	3.4	32
66	Characterization of a Novel Lipid-A fromRhizobium Species Sin-1. Journal of Biological Chemistry, 2002, 277, 41802-41810.	3.4	31
67	Formation of Novel Polysaccharides by <i>Bradyrhizobium japonicum</i> Bacteroids in Soybean Nodules. Applied and Environmental Microbiology, 1992, 58, 607-613.	3.1	31
68	The Pea Nodule Environment Restores the Ability of a Rhizobium leguminosarum Lipopolysaccharide acpXL Mutant To Add 27-Hydroxyoctacosanoic Acid to Its Lipid A. Journal of Bacteriology, 2006, 188, 2126-2133.	2.2	30
69	Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydrate Polymers, 2008, 73, 564-572.	10.2	29
70	The Lipopolysaccharide Lipid A Long-Chain Fatty Acid Is Important for <i>Rhizobium leguminosarum</i> Growth and Stress Adaptation in Free-Living and Nodule Environments. Molecular Plant-Microbe Interactions, 2017, 30, 161-175.	2.6	29
71	Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology, 2011, 21, 55-68.	2.5	28
72	A Comparison of the Surface Polysaccharides from Rhizobium leguminosarum 128C53 smrrifr with the Surface Polysaccharides from Its Exoâ ~1 Mutant. Plant Physiology, 1983, 71, 223-228.	4.8	27

#	Article	IF	CITATIONS
73	Roles of 3-Deoxy-d-manno-2-Octulosonic Acid Transferase from Moraxella catarrhalis in Lipooligosaccharide Biosynthesis and Virulence. Infection and Immunity, 2005, 73, 4222-4230.	2.2	27
74	Structures of the oligosaccharides obtained from the core regions of the lipopolysaccharides of Bradyhizobium japonicum 61A101c and its symbiotically defective lipopolysaccharide mutant, JS314. Carbohydrate Research, 1992, 231, 205-219.	2.3	26
75	Separation of bacterial capsular and lipopolysaccharides by preparative electrophoresis. Glycobiology, 1996, 6, 433-437.	2.5	26
76	Francisella Tularensis Blue–Gray Phase Variation Involves Structural Modifications of Lipopolysaccharide O-Antigen, Core and Lipid A and Affects Intramacrophage Survival and Vaccine Efficacy. Frontiers in Microbiology, 2010, 1, 129.	3.5	26
77	Lipooligosaccharide Structure is an Important Determinant in the Resistance of Neisseria Gonorrhoeae to Antimicrobial Agents of Innate Host Defense. Frontiers in Microbiology, 2011, 2, 30.	3.5	26
78	The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology, 2013, 23, 820-832.	2.5	26
79	Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. Journal of Endotoxin Research, 2002, 8, 47-58.	2.5	25
80	Genetic Locus Required for Antigenic Maturation of Rhizobium etli CE3 Lipopolysaccharide. Journal of Bacteriology, 2001, 183, 6054-6064.	2.2	24
81	Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested. Glycobiology, 2009, 19, 665-673.	2.5	24
82	An <i>acpXL</i> Mutant of Rhizobium leguminosarum bv. phaseoli Lacks 27-Hydroxyoctacosanoic Acid in Its Lipid A and Is Developmentally Delayed during Symbiotic Infection of the Determinate Nodulating Host Plant Phaseolus vulgaris. Journal of Bacteriology, 2011, 193, 4766-4778.	2.2	24
83	The Role of Oxidoreductases in Determining the Function of the Neisserial Lipid A Phosphoethanolamine Transferase Required for Resistance to Polymyxin. PLoS ONE, 2014, 9, e106513.	2.5	24
84	WbjA Adds Glucose To Complete the O-Antigen Trisaccharide Repeating Unit of the Lipopolysaccharide of Pseudomonas aeruginosa Serogroup O11. Journal of Bacteriology, 2002, 184, 323-326.	2.2	23
85	The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environmental Microbiology, 2005, 7, 1769-1774.	3.8	23
86	Structural Characterization of the Primary O-antigenic Polysaccharide of the Rhizobium leguminosarum 3841 Lipopolysaccharide and Identification of a New 3-Acetimidoylamino-3-deoxyhexuronic Acid Glycosyl Component. Journal of Biological Chemistry, 2008, 283, 16037-16050.	3.4	23
87	Chemical Synthesis and Immunological Properties of Oligosaccharides Derived from the Vegetative Cell Wall of <i>Bacillus anthracis</i> . ChemBioChem, 2008, 9, 1716-1720.	2.6	21
88	The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2016, 60, 4690-4700.	3.2	21
89	The structure of the L9 immunotype lipooligosaccharide from Neisseria meningitidis NMA Z2491. Carbohydrate Research, 2008, 343, 2971-2979.	2.3	20
90	Biochemical Characterization of Sinorhizobium meliloti Mutants Reveals Gene Products Involved in the Biosynthesis of the Unusual Lipid A Very Long-chain Fatty Acid. Journal of Biological Chemistry, 2011, 286, 17455-17466.	3.4	19

#	Article	IF	CITATIONS
91	The structure of the capsular polysaccharide from a swarming strain of pathogenic Proteus vulgaris. Carbohydrate Research, 1997, 301, 213-220.	2.3	17
92	Identification of an ATP-binding Cassette Transporter for Export of the O-antigen across the Inner Membrane inRhizobium etli Based on the Genetic, Functional, and Structural Analysis of an lps Mutant Deficient in O-antigen. Journal of Biological Chemistry, 2001, 276, 17190-17198.	3.4	17
93	Elucidating Peptidoglycan Structure: An Analytical Toolset. Trends in Microbiology, 2019, 27, 607-622.	7.7	17
94	Role of different moieties from the lipooligosaccharide molecule in biological activities of the <i>Moraxella catarrhalis</i> outer membrane. FEBS Journal, 2007, 274, 5350-5359.	4.7	16
95	Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques. Vaccine Journal, 2011, 18, 743-748.	3.1	16
96	Elucidation of a novel lipid A α-(1,1)-GalA transferase gene (rgtF) from Mesorhizobium loti: Heterologous expression of rgtF causes Rhizobium etli to synthesize lipid A with α-(1,1)-GalA. Glycobiology, 2013, 23, 546-558.	2.5	16
97	Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls. Planta, 2015, 242, 1123-1138.	3.2	16
98	Requirement of NMB0065 for connecting assembly and export of sialic acid capsular polysaccharides in Neisseria meningitidis. Microbes and Infection, 2010, 12, 476-487.	1.9	15
99	Identification of the Mutation Responsible for the Temperature-Sensitive Lipopolysaccharide O-Antigen Defect in the Pseudomonas aeruginosa Cystic Fibrosis Isolate 2192. Journal of Bacteriology, 2013, 195, 1504-1514.	2.2	15
100	Identification of two late acyltransferase genes responsible for lipid A biosynthesis in <i>Moraxella catarrhalis</i> . FEBS Journal, 2008, 275, 5201-5214.	4.7	14
101	Rhizobial lipo-oligosaccharide nodulation factors: multidimensional chromatographic analysis of symbiotic signals involved in the development of legume root nodules. Glycobiology, 1995, 5, 233-242.	2.5	12
102	An atypical lipoteichoic acid from Clostridium perfringens elicits a broadly cross-reactive and protective immune response. Journal of Biological Chemistry, 2020, 295, 9513-9530.	3.4	12
103	A Structural Comparison of the Acidic Extracellular Polysaccharides from <i>Rhizobium trifolii</i> Mutants Affected in Root Hair Infection. Plant Physiology, 1986, 80, 134-137.	4.8	11
104	Characterization of the lipopolysaccharide from a wbjE mutant of the serogroup O11 Pseudomonas aeruginosa strain, PA103. Carbohydrate Research, 2008, 343, 238-248.	2.3	11
105	Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots. International Journal of Biological Macromolecules, 2012, 51, 384-391.	7.5	10
106	Aberrant Nodulation Response of Vigna umbellata to a Bradyrhizobium japonicum NodZ Mutant and Nodulation Signals. Molecular Plant-Microbe Interactions, 1999, 12, 766-773.	2.6	9
107	Characterization of Galacturonosyl Transferase Genes rgtA, rgtB, rgtC, rgtD, and rgtE Responsible for Lipopolysaccharide Synthesis in Nitrogen-fixing Endosymbiont Rhizobium leguminosarum. Journal of Biological Chemistry, 2012, 287, 935-949.	3.4	9
108	Lipopolysaccharide core components of Rhizobium etli reacting with a panel of monoclonal antibodies. Plant and Soil, 1996, 186, 161-166.	3.7	6

#	Article	IF	CITATIONS
109	Structural and immunochemical relatedness suggests a conserved pathogenicity motif for secondary cell wall polysaccharides in Bacillus anthracis and infection-associated Bacillus cereus. PLoS ONE, 2017, 12, e0183115.	2.5	6
110	Structure of Lipopolysaccharide from Liberibacter crescens Is Low Molecular Weight and Offers Insight into Candidatus Liberibacter Biology. International Journal of Molecular Sciences, 2021, 22, 11240.	4.1	6
111	â€~ <i>Candidatus</i> Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. Molecular Plant-Microbe Interactions, 2022, 35, 257-273.	2.6	5
112	An Abundance of Nodulation Factors. Chemistry and Biology, 2005, 12, 956-958.	6.0	4
113	Elucidation of the 3-O-Deacylase Gene, pagL, Required for the Removal of Primary β-Hydroxy Fatty Acid from the Lipid A in the Nitrogen-fixing Endosymbiont Rhizobium etli CE3*. Journal of Biological Chemistry, 2013, 288, 12004-12013.	3.4	4
114	Structural Characterization of a Novel Tetrasaccharide Attached to Ser-61 of Human Factor IX by Mass Spectrometry and 1H NMR Spectroscopy. Techniques in Protein Chemistry, 1994, 5, 71-80.	0.3	0