
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends in Biotechnology, 2022, 40, 320-337.	9.3	14
2	Application of <i>Aureobasidium pullulans</i> in ironâ€poor soil. Can the production of siderophores improve iron bioavailability and yeast antagonistic activity?. Annals of Applied Biology, 2022, 180, 398-406.	2.5	6
3	Heat treatment effect on <i>Cadophora luteoâ€olivacea</i> of kiwifruit. Plant Pathology, 2022, 71, 644-653.	2.4	1
4	Ripe indexes, hot water treatments, and biocontrol agents as synergistic combination to control apple bull's eye rot. Biocontrol Science and Technology, 2022, 32, 1016-1026.	1.3	2
5	Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. Plants, 2022, 11, 1856.	3.5	15
6	How siderophore production can influence the biocontrol activity of Aureobasidium pullulans against Monilinia laxa on peaches. Biological Control, 2021, 152, 104456.	3.0	18
7	RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. Plants, 2021, 10, 650.	3.5	36
8	Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara viticola on Grapevine. Frontiers in Plant Science, 2021, 12, 667539.	3.6	18
9	Does RNAi-Based Technology Fit within EU Sustainability Goals?. Trends in Biotechnology, 2021, 39, 644-647.	9.3	38
10	Post-Harvest Non-Conventional and Traditional Methods to Control Cadophora luteo-olivacea: Skin Pitting Agent of Actinidia chinensis var. deliciosa (A. Chev.). Horticulturae, 2021, 7, 169.	2.8	8
11	Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiology, 2020, 87, 103395.	4.2	49
12	Study of the efficacy of <i>Aureobasidium</i> strains belonging to three different species: <i>A</i> . <scp><i>pullulans</i></scp> , <i>A. subglaciale</i> and <i>A. melanogenum</i> against <i>Botrytis cinerea</i> of tomato. Annals of Applied Biology, 2020, 177, 266-275.	2.5	16
13	Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine. International Journal of Molecular Sciences, 2020, 21, 5701.	4.1	39
14	Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innovative Food Science and Emerging Technologies, 2020, 64, 102397.	5.6	31
15	Editorial: Interplay Between Fungal Pathogens and Fruit Ripening. Frontiers in Plant Science, 2020, 11, 275.	3.6	1
16	Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS ONE, 2020, 15, e0226448.	2.5	7
17	Biological Control of Postharvest Diseases by Microbial Antagonists. Progress in Biological Control, 2020, , 243-261.	0.5	2

18 Title is missing!. , 2020, 15, e0226448.

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0226448.		0
20	Title is missing!. , 2020, 15, e0226448.		0
21	Title is missing!. , 2020, 15, e0226448.		0
22	Induced expression of the Fragaria × ananassa Rapid alkalinization factorâ€33â€like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages. Molecular Plant Pathology, 2019, 20, 1252-1263.	4.2	13
23	Transcriptome Profiles of Strawberry (Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. Frontiers in Plant Science, 2019, 10, 1131.	3.6	54
24	Different Antifungal Activity of Anabaena sp., Ecklonia sp., and Jania sp. against Botrytis cinerea. Marine Drugs, 2019, 17, 299.	4.6	30
25	Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. International Journal of Food Microbiology, 2019, 289, 168-173.	4.7	17
26	Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection. Frontiers in Plant Science, 2019, 10, 1704.	3.6	26
27	Use of algae in strawberry management. Journal of Applied Phycology, 2018, 30, 3551-3564.	2.8	25
28	Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition. Food Microbiology, 2018, 72, 67-72.	4.2	44
29	Molecular characterization of the two postharvest biological control agents Aureobasidium pullulans L1 and L8. Biological Control, 2018, 123, 53-59.	3.0	23
30	Molecular analysis of the early interaction between the grapevine flower and <scp><i>Botrytis cinerea</i></scp> reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant, Cell and Environment, 2017, 40, 1409-1428.	5.7	44
31	Characterizing the interaction between <i>Botrytis cinerea</i> and grapevine inflorescences. Acta Horticulturae, 2016, , 29-36.	0.2	2
32	Polyphenols Variation in Fruits of the Susceptible Strawberry Cultivar Alba during Ripening and upon Fungal Pathogen Interaction and Possible Involvement in Unripe Fruit Tolerance. Journal of Agricultural and Food Chemistry, 2016, 64, 1869-1878.	5.2	43
33	Transient transformation meets gene function discovery: the strawberry fruit case. Frontiers in Plant Science, 2015, 6, 444.	3.6	44
34	Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum. Plant Molecular Biology, 2015, 89, 49-65.	3.9	3
35	Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches. Microbiological Research, 2015, 181, 61-67.	5.3	28
36	Gene expression analysis of peach fruit at different growth stages and with different susceptibility to Monilinia laxa. European Journal of Plant Pathology, 2014, 140, 503-513.	1.7	25

#	Article	IF	CITATIONS
37	Vv <scp>AMP</scp> 2, a grapevine flowerâ€specific defensin capable of inhibiting <i><scp>B</scp>otrytis cinerea</i> growth: insights into its mode of action. Plant Pathology, 2014, 63, 899-910.	2.4	20
38	The <i>mannoseâ€binding lectin</i> gene <i><scp>FaMBL1</scp></i> is involved in the resistance of unripe strawberry fruits to <i><scp>C</scp>olletotrichum acutatum</i> . Molecular Plant Pathology, 2014, 15, 832-840.	4.2	22
39	First Report of Asiatic Brown Rot Caused by <i>Monilinia polystroma</i> on Peach in Italy. Plant Disease, 2014, 98, 1585-1585.	1.4	21
40	The peach (<i>Prunus persica</i>) defensin PpDFN1 displays antifungal activity through specific interactions with the membrane lipids. Plant Pathology, 2013, 62, 393-403.	2.4	15
41	Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiology, 2012, 12, 93.	3.3	27
42	Identification and Characterization of the Defensin-Like Gene Family of Grapevine. Molecular Plant-Microbe Interactions, 2012, 25, 1118-1131.	2.6	38
43	<i>Colletotrichum acutatum</i> interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathology, 2011, 60, 685-697.	2.4	87
44	The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. Journal of Bioenergetics and Biomembranes, 2011, 43, 611-621.	2.3	16
45	The Activity of the Plant Mitochondrial Inner Membrane Anion Channel (PIMAC) of Maize Populations Divergently Selected for Cold Tolerance Level is Differentially Dependent on the Growth Temperature of Seedlings. Plant and Cell Physiology, 2011, 52, 193-204.	3.1	7
46	The RNA Hydrolysis and the Cytokinin Binding Activities of PR-10 Proteins Are Differently Performed by Two Isoforms of the Pru p 1 Peach Major Allergen and Are Possibly Functionally Related. Plant Physiology, 2009, 150, 1235-1247.	4.8	66
47	Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biology and Technology, 2009, 52, 16-23.	6.0	31
48	Identification and Kinetic Characterization of HtDTC, The Mitochondrial Dicarboxylate–Tricarboxylate Carrier of Jerusalem Artichoke Tubers. Journal of Bioenergetics and Biomembranes, 2006, 38, 57-65.	2.3	11
49	Susceptibility of apricot and peach fruit to Monilinia laxa during phenological stages. Postharvest Biology and Technology, 2003, 30, 105-109.	6.0	44
50	Studies on thiabendazole resistance of Penicillium expansum of pears: pathogenic fitness and genetic characterization. Plant Pathology, 2003, 52, 362-370.	2.4	101
51	Genetic Diversity Between Botrytis cinerea Isolates from Unstored and Cold Stored Kiwi fruit. Journal of Phytopathology, 2002, 150, 629-635.	1.0	21
52	Structure of a PH Domain from the C. elegans Muscle Protein UNC-89 Suggests a Novel Function. Structure, 2000, 8, 1079-1087.	3.3	25
53	Peracetic Acid and Chlorine Dioxide for Postharvest Control of Monilinia laxa in Stone Fruits. Plant Disease, 1999, 83, 773-776.	1.4	33
54	The PH superfold: a structural scaffold for multiple functions. Trends in Biochemical Sciences, 1999, 24, 441-445.	7.5	175

#	Article	IF	CITATIONS
55	Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure, 1999, 7, 449-460.	3.3	197
56	Conformational stability studies of the pleckstrin DEP domain: definition of the domain boundaries. BBA - Proteins and Proteomics, 1998, 1385, 157-164.	2.1	32
57	Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature, 1996, 382, 646-649.	27.8	426
58	Editorial: Advances and Challenges of RNAi Based Technologies for Plants—Volume 2. Frontiers in Plant Science, 0, 13, .	3.6	1