
Hans Bräuner-Osborne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligands for Glutamate Receptors:  Design and Therapeutic Prospects. Journal of Medicinal Chemistry, 2000, 43, 2609-2645.	6.4	520
2	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
3	Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications, 2012, 3, 1329.	12.8	369
4	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
5	Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants. Neuron, 2006, 50, 589-601.	8.1	289
6	Structure, Pharmacology and Therapeutic Prospects of Family C G-Protein Coupled Receptors. Current Drug Targets, 2007, 8, 169-184.	2.1	222
7	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
8	Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids. Molecular Pharmacology, 2005, 67, 589-597.	2.3	194
9	Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABAB(1)-deficient mice. European Journal of Neuroscience, 2003, 18, 2722-2730.	2.6	175
10	Agonists and Inverse Agonists for the Herpesvirus 8-encoded Constitutively Active Seven-transmembrane Oncogene Product, ORF-74. Journal of Biological Chemistry, 1999, 274, 956-961.	3.4	169
11	Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. British Journal of Pharmacology, 2003, 138, 1026-1030.	5.4	163
12	Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 2019, 179, 895-908.e21.	28.9	157
13	The Agonist-binding Domain of the Calcium-sensing Receptor Is Located at the Amino-terminal Domain. Journal of Biological Chemistry, 1999, 274, 18382-18386.	3.4	156
14	Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene, 2004, 335, 37-46.	2.2	147
15	Molecular Pharmacology of Promiscuous Seven Transmembrane Receptors Sensing Organic Nutrients. Molecular Pharmacology, 2009, 76, 453-465.	2.3	140
16	Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Molecular and Cellular Endocrinology, 2014, 382, 938-949.	3.2	131
17	Pharmacology of muscarinic acetylcholine receptor subtypes (m1–m5): high throughput assays in mammalian cells. European Journal of Pharmacology, 1996, 295, 93-102.	3.5	106
18	Different domains of the glucagon and glucagonâ€like peptideâ€1 receptors provide the critical determinants of ligand selectivity. British Journal of Pharmacology, 2003, 138, 787-794.	5.4	103

#	Article	IF	CITATIONS
19	Synthesis and Structure–Activity Relationships of <i>N</i> -Benzyl Phenethylamines as 5-HT _{2A/2C} Agonists. ACS Chemical Neuroscience, 2014, 5, 243-249.	3.5	103
20	The Anticonvulsant Gabapentin (Neurontin) Does Not Act through Î ³ -Aminobutyric Acid-B Receptors. Molecular Pharmacology, 2002, 61, 1377-1384.	2.3	99
21	Molecular basis for amino acid sensing by family C Gâ€proteinâ€coupled receptors. British Journal of Pharmacology, 2009, 156, 869-884.	5.4	99
22	Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E310-E320.	3.5	89
23	α4βδ GABA _A receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13404-13409.	7.1	87
24	The <scp>GPCR</scp> , class <scp>C</scp> , group 6, subtype <scp>A</scp> (<scp>GPRC6A</scp>) receptor: from cloning to physiological function. British Journal of Pharmacology, 2014, 171, 1129-1141.	5.4	87
25	Quinazolin-4-one Derivatives: A Novel Class of Noncompetitive NR2C/D Subunit-Selective <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor Antagonists. Journal of Medicinal Chemistry, 2010, 53, 5476-5490.	6.4	83
26	Biased agonism of the calcium-sensing receptor. Cell Calcium, 2012, 51, 107-116.	2.4	76
27	A New Highly Selective Metabotropic Excitatory Amino Acid Agonist: 2-Amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric Acid. Journal of Medicinal Chemistry, 1996, 39, 3188-3194.	6.4	74
28	Pharmacological characterization of mouse GPRC6A, an L -α -amino-acid receptor modulated by divalent cations. British Journal of Pharmacology, 2007, 150, 798-807.	5.4	74
29	Molecular pharmacology of human NMDA receptors. Neurochemistry International, 2012, 61, 601-609.	3.8	74
30	Cloning and characterization of a human orphan family C G-protein coupled receptor GPRC5D. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1518, 237-248.	2.4	73
31	Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). FEBS Journal, 2002, 269, 5076-5087.	0.2	73
32	High-frequency <i>HTR3B</i> variant associated with major depression dramatically augments the signaling of the human 5-HT _{3AB} receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 722-727.	7.1	72
33	Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Letters, 1995, 363, 261-263.	2.8	69
34	Sequence and Expression Pattern of a Novel Human Orphan G-Protein-Coupled Receptor, GPRC5B, a Family C Receptor with a Short Amino-Terminal Domain. Genomics, 2000, 65, 121-128.	2.9	69
35	Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochemical Pharmacology, 2004, 67, 2115-2127.	4.4	67
36	3B but which 3B? And that's just one of the questions: the heterogeneity of human 5-HT3 receptors. Trends in Pharmacological Sciences, 2008, 29, 437-444.	8.7	67

#	Article	IF	CITATIONS
37	Total synthesis and structure–activity relationship studies of a series of selective G protein inhibitors. Nature Chemistry, 2016, 8, 1035-1041.	13.6	67
38	Three Distinct Epitopes on the Extracellular Face of the Glucagon Receptor Determine Specificity for the Glucagon Amino Terminus. Journal of Biological Chemistry, 2003, 278, 28005-28010.	3.4	66
39	Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochemical Pharmacology, 2018, 150, 97-107.	4.4	65
40	Structure of a G-protein-coupling Domain of a Muscarinic Receptor Predicted by Random Saturation Mutagenesis. Journal of Biological Chemistry, 1996, 271, 3058-3065.	3.4	63
41	No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. Journal of Molecular Endocrinology, 2009, 42, 215-223.	2.5	63
42	Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking. Journal of Biological Chemistry, 2015, 290, 1233-1243.	3.4	63
43	Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 298-309.	2.5	61
44	Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology, 2020, 166, 107718.	4.1	61
45	Design of excitatory amino acid receptor agonists, partial agonists and antagonists: ibotenic acid as a key lead structure. European Journal of Medicinal Chemistry, 1996, 31, 515-537.	5.5	60
46	(S)-Homo-AMPA, a Specific Agonist at the mGlu6 Subtype of Metabotropic Glutamic Acid Receptors. Journal of Medicinal Chemistry, 1997, 40, 3700-3705.	6.4	60
47	3-Substituted 2-phenyl-indoles: privileged structures for medicinal chemistry. RSC Advances, 2013, 3, 945-960.	3.6	59
48	International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacological Reviews, 2020, 72, 558-604.	16.0	59
49	Asymmetric activation of the calcium-sensing receptor homodimer. Nature, 2021, 595, 455-459.	27.8	59
50	Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice. Endocrinology, 2013, 154, 3978-3983.	2.8	58
51	Functional Importance of the Ala116–Pro136 Region in the Calcium-sensing Receptor. Journal of Biological Chemistry, 2000, 275, 29547-29555.	3.4	57
52	The GABA _{B1a} Isoform Mediates Heterosynaptic Depression at Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2009, 29, 1414-1423.	3.6	54
53	Carbamoylcholine Homologs: Novel and Potent Agonists at Neuronal Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2003, 64, 865-875.	2.3	52
54	Allosteric Modulation of the Calcium-Sensing Receptor. Current Neuropharmacology, 2007, 5, 180-186.	2.9	51

#	Article	IF	CITATIONS
55	Azetidinic amino acids: stereocontrolled synthesis and pharmacological characterization as ligands for glutamate receptors and transporters. Organic and Biomolecular Chemistry, 2005, 3, 3926.	2.8	50
56	Molecular determinants of non-competitive antagonist binding to the mouse GPRC6A receptor. Cell Calcium, 2009, 46, 323-332.	2.4	50
57	Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding. ChemMedChem, 2010, 5, 986-1000.	3.2	50
58	Computer-Aided Discovery of Aromatic <scp>l</scp> -α-Amino Acids as Agonists of the Orphan G Protein-Coupled Receptor GPR139. Journal of Chemical Information and Modeling, 2014, 54, 1553-1557.	5.4	50
59	(<i>R</i>)-(3-Amino-2-fluoropropyl) Phosphinic Acid (AZD3355), a Novel GABA _B Receptor Agonist, Inhibits Transient Lower Esophageal Sphincter Relaxation through a Peripheral Mode of Action. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 504-512.	2.5	49
60	l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids, 2012, 43, 1265-1275.	2.7	49
61	Ibotenic acid and thioibotenic acid: a remarkable difference in activity at group III metabotropic glutamate receptors. European Journal of Pharmacology, 2004, 486, 241-250.	3.5	47
62	Novel 1-Hydroxyazole Bioisosteres of Glutamic Acid. Synthesis, Protolytic Properties, and Pharmacology. Journal of Medicinal Chemistry, 2002, 45, 19-31.	6.4	46
63	Design, Synthesis, and Pharmacology of a Highly Subtype-Selective GluR1/2 Agonist, (RS)-2-Amino-3-(4-chloro-3-hydroxy-5-isoxazolyl)propionic Acid (Cl-HIBO). Journal of Medicinal Chemistry, 2003, 46, 2246-2249.	6.4	46
64	The rat GPRC6A: Cloning and characterization. Gene, 2007, 396, 257-267.	2.2	46
65	The l-α-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in l-arginine-induced insulin release. Amino Acids, 2013, 44, 383-390.	2.7	46
66	Novel Cyclic Î ³ -Hydroxybutyrate (GHB) Analogs with High Affinity and Stereoselectivity of Binding to GHB Sites in Rat Brain. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 346-351.	2.5	45
67	Detailed Characterization of the In Vitro Pharmacological and Pharmacokinetic Properties of <i>N</i> -(2-Hydroxybenzyl)-2,5-Dimethoxy-4-Cyanophenylethylamine (25CN-NBOH), a Highly Selective and Brain-Penetrant 5-HT _{2A} Receptor Agonist. Journal of Pharmacology and Experimental Therapeutics. 2017. 361. 441-453.	2.5	45
68	Cloning and Characterization of a Functional Human Î ³ -Aminobutyric Acid (GABA) Transporter, Human GAT-2. Journal of Biological Chemistry, 2007, 282, 19331-19341.	3.4	44
69	Synthesis, Binding Affinity at Glutamic Acid Receptors, Neuroprotective Effects, and Molecular Modeling Investigation of Novel Dihydroisoxazole Amino Acids. Journal of Medicinal Chemistry, 2005, 48, 6315-6325.	6.4	43
70	(1 <i>S</i> , 3 <i>S</i>)-3-Amino-4-difluoromethylenyl-1-cyclopentanoic Acid (CPP-115), a Potent Î ³ -Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Cocaine Addiction. Journal of Medicinal Chemistry, 2012, 55, 357-366.	6.4	43
71	Synthesis and Enantiopharmacology of New AMPA-Kainate Receptor Agonists. Journal of Medicinal Chemistry, 1999, 42, 4099-4107.	6.4	42
72	Arrestin-Dependent and -Independent Internalization of G Protein–Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Molecular Pharmacology, 2021, 99, 242-255.	2.3	41

#	Article	IF	CITATIONS
73	Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors. European Journal of Pharmacology, 1998, 350, 311-316.	3.5	40
74	Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective <i>N</i> -Methyl-d-Aspartate Receptor Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 650-662.	2.5	40
75	G Protein-Coupled Receptor Signaling Analysis Using Homogenous Time-Resolved Förster Resonance Energy Transfer (HTRF®) Technology. International Journal of Molecular Sciences, 2014, 15, 2554-2572.	4.1	39
76	The Four Human γ-Aminobutyric Acid (GABA) Transporters: Pharmacological Characterization and Validation of a Highly Efficient Screening Assay. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 241-249.	1.1	38
77	Strontium Is a Biased Agonist of the Calcium-Sensing Receptor in Rat Medullary Thyroid Carcinoma 6-23 Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 638-649.	2.5	38
78	Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Scientific Reports, 2015, 5, 13869.	3.3	38
79	Rational Design, Synthesis, and Pharmacological Evaluation of 2-Azanorbornane-3-exo,5-endo-dicarboxylic Acid:Â A Novel Conformationally Restricted Glutamic Acid Analogue. Journal of Organic Chemistry, 2003, 68, 1489-1495.	3.2	36
80	Chemogenomic Discovery of Allosteric Antagonists at the GPRC6A Receptor. Chemistry and Biology, 2011, 18, 1489-1498.	6.0	36
81	Structure-based discovery of antagonists for GluN3-containing N-methyl-d-aspartate receptors. Neuropharmacology, 2013, 75, 324-336.	4.1	36
82	The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW. Neurochemistry International, 2017, 102, 105-113.	3.8	36
83	Functional pharmacology of cloned heterodimeric GABAB receptors expressed in mammalian cells. British Journal of Pharmacology, 1999, 128, 1370-1374.	5.4	35
84	Chemoenzymatic Synthesis of a Series of 4-Substituted Glutamate Analogues and Pharmacological Characterization at Human Glutamate Transporters Subtypes 1â^'3. Journal of Medicinal Chemistry, 2005, 48, 7980-7992.	6.4	35
85	Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenetics and Genomics, 2007, 17, 255-266.	1.5	35
86	Pharmacological Characterization and Modeling of the Binding Sites of Novel 1,3-Bis(pyridinylethynyl)benzenes as Metabotropic Glutamate Receptor 5-Selective Negative Allosteric Modulators. Molecular Pharmacology, 2012, 82, 929-937.	2.3	34
87	Excitatory Amino Acid Receptor Ligands:Â Resolution, Absolute Stereochemistry, and Enantiopharmacology of 2-Amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic Acid. Journal of Medicinal Chemistry, 1998, 41, 930-939.	6.4	33
88	Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice. Journal of Endocrinology, 2013, 217, 151-160.	2.6	33
89	Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Scientific Reports, 2020, 10, 17395.	3.3	33
90	Pharmacology of (S)-homoquisqualic acid and (S)-2-amino-5-phosphonopentanoic acid [(S)-AP5] at cloned metabotropic glutamate receptors. British Journal of Pharmacology, 1998, 123, 269-274.	5.4	32

#	Article	IF	CITATIONS
91	The dance of the clams: twists and turns in the family C GPCR homodimer. Trends in Pharmacological Sciences, 2002, 23, 491-493.	8.7	32
92	Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. Journal of Biological Chemistry, 2019, 294, 5747-5758.	3.4	32
93	Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor. NeuroReport, 1999, 10, 3923-3925.	1.2	31
94	Pharmacological Characterization of Ligands at Recombinant NMDA Receptor Subtypes by Electrophysiological Recordings and Intracellular Calcium Measurements. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 304-315.	1.1	31
95	Synthesis and Pharmacological Characterization at Glutamate Receptors of the Four Enantiopure Isomers of Tricholomic Acid. Journal of Medicinal Chemistry, 2008, 51, 2311-2315.	6.4	30
96	The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. Journal of Biological Chemistry, 2017, 292, 6910-6926.	3.4	30
97	Novel approaches leading towards peptide GPCR deâ€orphanisation. British Journal of Pharmacology, 2020, 177, 961-968.	5.4	30
98	Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochemical Pharmacology, 2013, 86, 521-528.	4.4	29
99	mGluR5: Exploration of Orthosteric and Allosteric Ligand Binding Pockets and Their Applications to Drug Discovery. Neurochemical Research, 2014, 39, 1862-1875.	3.3	29
100	<i>N</i> â€glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization. FEBS Letters, 2015, 589, 588-597.	2.8	29
101	Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. European Journal of Pharmacology, 2015, 763, 233-240.	3.5	29
102	Investigating Internalization and Intracellular Trafficking of GPCRs: New Techniques and Real-Time Experimental Approaches. Handbook of Experimental Pharmacology, 2017, 245, 41-61.	1.8	29
103	1,2,3-Triazolyl amino acids as AMPA receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7512-7515.	2.2	28
104	Robust <scp>GLP</scp> â€1 secretion by basic <scp>L</scp> â€amino acids does not require the <scp>GPRC6A</scp> receptor. Diabetes, Obesity and Metabolism, 2017, 19, 599-603.	4.4	28
105	The role of Arg78 in the metabotropic glutamate receptor mGlu1 for agonist binding and selectivity. European Journal of Pharmacology, 2000, 397, 247-253.	3.5	27
106	Synthesis and receptor binding affinity of new selective GluR5 ligands. Bioorganic and Medicinal Chemistry, 2001, 9, 875-879.	3.0	27
107	Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and longâ€ŧerm impairment of the GIP system. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 122-132.	2.5	27
108	Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors. European Journal of Pharmacology, 1997, 335, R1-R3.	3.5	26

#	Article	IF	CITATIONS
109	(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic Acid, a Potent and Selective Agonist at the GluR5 Subtype of Ionotropic Glutamate Receptors. Synthesis, Modeling, and Molecular Pharmacology. Journal of Medicinal Chemistry, 2003, 46, 1350-1358.	6.4	26
110	Synthesis and Anticonvulsant Activity of Novel Bicyclic Acidic Amino Acids. Journal of Medicinal Chemistry, 2003, 46, 3102-3108.	6.4	26
111	Novel High-Affinity and Selective Biaromatic 4-Substituted Î ³ -Hydroxybutyric Acid (GHB) Analogues as GHB Ligands: Design, Synthesis, and Binding Studies. Journal of Medicinal Chemistry, 2008, 51, 8088-8095.	6.4	26
112	Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors. JCI Insight, 2017, 2, e91079.	5.0	26
113	High Throughput Assays of Cloned Adrenergic, Muscarinic, Neurokinin, and Neurotrophin Receptors in Living Mammalian Cells. Basic and Clinical Pharmacology and Toxicology, 1995, 76, 308-311.	0.0	25
114	2-Amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid: resolution, absolute stereochemistry and enantiopharmacology at glutamate receptors. Bioorganic and Medicinal Chemistry, 2002, 10, 2259-2266.	3.0	25
115	Synthesis and pharmacological evaluation of N-benzyl substituted 4-bromo-2,5-dimethoxyphenethylamines as 5-HT2A/2C partial agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3933-3937.	3.0	25
116	Investigating the molecular mechanism of positive and negative allosteric modulators in the calcium-sensing receptor dimer. Scientific Reports, 2017, 7, 46355.	3.3	25
117	The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Scientific Reports, 2017, 7, 1128.	3.3	25
118	Tweaking Agonist Efficacy at N-Methyl-d-aspartate Receptors by Site-Directed Mutagenesis. Molecular Pharmacology, 2005, 68, 1510-1523.	2.3	24
119	Structure–activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. European Journal of Medicinal Chemistry, 2018, 156, 847-860.	5.5	24
120	CLP-1 Val8: A Biased GLP-1R Agonist with Altered Binding Kinetics and Impaired Release of Pancreatic Hormones in Rats. ACS Pharmacology and Translational Science, 2021, 4, 296-313.	4.9	24
121	The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid. European Journal of Pharmacology, 2004, 499, 35-44.	3.5	23
122	FLIPR® Assays of Intracellular Calcium in GPCR Drug Discovery. Methods in Molecular Biology, 2009, 552, 269-278.	0.9	23
123	The use of <i>Xenopus</i> oocytes in drug screening. Expert Opinion on Drug Discovery, 2011, 6, 141-153.	5.0	23
124	Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139. Scientific Reports, 2016, 6, 36681.	3.3	23
125	Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function. Journal of Biological Chemistry, 2017, 292, 1524-1534.	3.4	23
126	Structure–Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YMâ€⊋54890, Targeting the G _q Protein. ChemMedChem, 2017, 12, 830-834.	3.2	23

#	Article	IF	CITATIONS
127	Calcium-Sensing Receptor Internalization Isβ-Arrestin–Dependent and Modulated by Allosteric Ligands. Molecular Pharmacology, 2019, 96, 463-474.	2.3	23
128	Synthesis and Pharmacology of 3-Isoxazolol Amino Acids as Selective Antagonists at Group I Metabotropic Glutamic Acid Receptors. Journal of Medicinal Chemistry, 2001, 44, 1051-1059.	6.4	22
129	Design, Synthesis, and Pharmacological Characterization of Novel, Potent NMDA Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 6740-6748.	6.4	22
130	Rational Design and Enantioselective Synthesis of (1R,4S,5R,6S)-3-Azabicyclo[3.3.0]octane-4,6-dicarboxylic Acid A Novel Inhibitor at Human Glutamate Transporter Subtypes 1, 2, and 3. Journal of Medicinal Chemistry, 2006, 49, 172-178.	6.4	22
131	Known regulators of nitric oxide synthase and arginase are agonists at the human G-protein-coupled receptor GPRC6A. British Journal of Pharmacology, 2006, 147, 855-863.	5.4	22
132	Novel 3â€Carboxy―and 3â€Phosphonopyrazoline Amino Acids as Potent and Selective NMDA Receptor Antagonists: Design, Synthesis, and Pharmacological Characterization. ChemMedChem, 2010, 5, 1465-1475.	3.2	22
133	The Emerging Role of Promiscuous 7TM Receptors as Chemosensors for Food Intake. Vitamins and Hormones, 2010, 84, 151-184.	1.7	22
134	Crystal Structure and Pharmacological Characterization of a Novel N-Methyl-d-aspartate (NMDA) Receptor Antagonist at the GluN1 Glycine Binding Site. Journal of Biological Chemistry, 2013, 288, 33124-33135.	3.4	22
135	Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold. Journal of Medicinal Chemistry, 2015, 58, 8938-8951.	6.4	22
136	Functional partial agonism at cloned human muscarinic acetylcholine receptors. European Journal of Pharmacology, 1996, 313, 145-150.	3.5	21
137	4-Alkylated homoibotenic acid (HIBO) analogues: Versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes. Neuropharmacology, 2005, 49, 114-119.	4.1	21
138	Synthesis and pharmacology of glutamate receptor ligands: new isothiazole analogues of ibotenic acid. Organic and Biomolecular Chemistry, 2007, 5, 463-471.	2.8	21
139	The Glutamate Receptor GluR5 Agonist (<i>S</i>)-2-Amino-3-(3-hydroxy-7,8-dihydro-6 <i>H</i> -cyclohepta[<i>d</i>]isoxazol-4-yl)propionic Acid and the 8-Methyl Analogue: Synthesis, Molecular Pharmacology, and Biostructural Characterizationâ€PDB ID: 2WKY Journal of Medicinal Chemistry. 2009, 52, 4911-4922.	6.4	21
140	A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors. Journal of Biomolecular Screening, 2015, 20, 849-857.	2.6	21
141	Structure–Activity Relationship Studies of the Natural Product G _{q/11} Protein Inhibitor YMâ€254890. ChemMedChem, 2019, 14, 865-870.	3.2	21
142	Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled Î ³ -Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity Î ³ -Hydroxybutyric Acid Binding Sites. Journal of Medicinal Chemistry, 2010, 53, 6506-6510.	6.4	20
143	Pharmacological Identification of a Guanidine-Containing β-Alanine Analogue with Low Micromolar Potency and Selectivity for the Betaine/GABA Transporter 1 (BGT1). Neurochemical Research, 2014, 39, 1988-1996.	3.3	20
144	Functional Characterisation of Homomeric Ionotropic Glutamate Receptors GluR1-GluR6 in a Fluorescence-Based High Throughput Screening Assay. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 147-158.	1.1	19

#	Article	IF	CITATIONS
145	N-Hydroxypyrazolyl Glycine Derivatives as Selective N-Methyl-d-aspartic Acid Receptor Ligands. Journal of Medicinal Chemistry, 2008, 51, 4179-4187.	6.4	19
146	Phenylacetic acids and the structurally related nonâ€steroidal antiâ€inflammatory drug diclofenac bind to specific γâ€hydroxybutyric acid sites in rat brain. Fundamental and Clinical Pharmacology, 2009, 23, 207-213.	1.9	19
147	Structure–Activity Relationships for Negative Allosteric mGluR5 Modulators. ChemMedChem, 2012, 7, 440-451.	3.2	19
148	Pharmacology and physiological function of the orphan GPRC6A receptor. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 77-87.	2.5	19
149	3-Pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing. European Journal of Medicinal Chemistry, 1999, 34, 967-976.	5.5	18
150	Synthesis and pharmacological characterization at glutamate receptors of erythro- and threo-tricholomic acid and homologues thereof. Tetrahedron, 2007, 63, 2249-2256.	1.9	18
151	Xenopus Oocyte Electrophysiology in GPCR Drug Discovery. Methods in Molecular Biology, 2009, 552, 343-357.	0.9	18
152	lonotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist. European Journal of Medicinal Chemistry, 2000, 35, 69-76.	5.5	17
153	Functional Characterization of Tet-AMPA [Tetrazolyl-2-amino-3-(3-hydroxy-5-methyl-) Tj ETQq1 1 0.784314 rgB Molecular Basis for the Functional Selectivity Profile of 2-Bn-Tet-AMPA. Journal of Medicinal Chemistry. 2007. 50. 4177-4185.	T /Overlock 6.4	2 10 Tf 50 482 17
154	Metabolic and skeletal homeostasis are maintained in full locus GPRC6A knockout mice. Scientific Reports, 2019, 9, 5995.	3.3	17
155	Pharmacology and function of the orphan GPR139 G proteinâ€coupled receptor. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 35-46.	2.5	17
156	A new structural class of subtype-selective inhibitor of cloned excitatory amino acid transporter, EAAT2. European Journal of Pharmacology, 2000, 406, 41-44.	3.5	16
157	Mutation-induced Quisqualic Acid and Ibotenic Acid Affinity at the Metabotropic Glutamate Receptor Subtype 4. Journal of Biological Chemistry, 2004, 279, 34811-34817.	3.4	16
158	Novel Radioiodinated γ-Hydroxybutyric Acid Analogues for Radiolabeling and Photolinking of High-Affinity γ-Hydroxybutyric Acid Binding Sites. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 458-464.	2.5	16
159	Enhanced voluntary wheel running in GPRC6A receptor knockout mice. Physiology and Behavior, 2013, 118, 144-151.	2.1	16
160	Identification of AICP as a GluN2C-Selective <i>N</i> -Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site. Molecular Pharmacology, 2017, 92, 151-161.	2.3	16
161	Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). Journal of Medicinal Chemistry, 2017, 60, 8834-8846.	6.4	16
162	Construction of a High Affinity Zinc Binding Site in the Metabotropic Glutamate Receptor mGluR1. Journal of Biological Chemistry, 2001, 276, 10110-10118.	3.4	15

#	Article	IF	CITATIONS
163	Selective Agonists at Group II Metabotropic Glutamate Receptors:Â Synthesis, Stereochemistry, and Molecular Pharmacology of (S)- and (R)-2-Amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric Acid. Journal of Medicinal Chemistry, 2002, 45, 4240-4245.	6.4	15
164	Novel 5-substituted 1-pyrazolol analogues of ibotenic acid: Synthesis and pharmacology at glutamate receptors. Bioorganic and Medicinal Chemistry, 2007, 15, 3524-3538.	3.0	15
165	Novel Strategies in Drug Discovery of the Calcium-Sensing Receptor Based on Biased Signaling. Current Drug Targets, 2012, 13, 1324-1335.	2.1	15
166	The selective 5-HT2A receptor agonist 25CN-NBOH: Structure-activity relationship, in vivo pharmacology, and in vitro and ex vivo binding characteristics of [3H]25CN-NBOH. Biochemical Pharmacology, 2020, 177, 113979.	4.4	15
167	Synthesis of Conformationally Constrained Clutamic Acid Homologues and Investigation of Their Pharmacological Profiles. ChemMedChem, 2007, 2, 1639-1647.	3.2	14
168	cAMP Biosensors Applied in Molecular Pharmacological Studies of G Protein-Coupled Receptors. Methods in Enzymology, 2013, 522, 191-207.	1.0	14
169	The orthosteric <scp>GABA_A</scp> receptor ligand <scp>T</scp> hioâ€4â€ <scp>PIOL</scp> displays distinctly different functional properties at synaptic and extrasynaptic receptors. British Journal of Pharmacology, 2013, 170, 919-932.	5.4	14
170	Ligand-directed bias of G protein signaling at the dopamine D2 receptor. Cell Chemical Biology, 2022, 29, 226-238.e4.	5.2	14
171	Molecular insights into ligand recognition and G protein coupling of the neuromodulatory orphan receptor GPR139. Cell Research, 2022, 32, 210-213.	12.0	13
172	Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues. Bioorganic and Medicinal Chemistry, 2003, 11, 4341-4349.	3.0	12
173	Detailed In Vitro Pharmacological Characterization of Clinically Tested Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. Molecular Pharmacology, 2020, 98, 49-60.	2.3	12
174	The Calcium-Sensing Receptor Is Essential for Calcium and Bicarbonate Sensitivity in Human Spermatozoa. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1775-1792.	3.6	12
175	Somatostatin venom analogs evolved by fish-hunting cone snails: From prey capture behavior to identifying drug leads. Science Advances, 2022, 8, eabk1410.	10.3	12
176	Synthesis and Pharmacology of a New AMPAâ^'Kainate Receptor Agonist with Potent Convulsant Activity. Journal of Medicinal Chemistry, 1998, 41, 3759-3762.	6.4	11
177	Design of novel conformationally restricted analogues of glutamic acid. Tetrahedron, 2003, 59, 1443-1452.	1.9	11
178	Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils. Journal of Pharmacological and Toxicological Methods, 2017, 88, 72-78.	0.7	11
179	Delineation of molecular determinants for FR900359 inhibition of Gq/11 unlocks inhibition of Gαs. Journal of Biological Chemistry, 2020, 295, 13850-13861.	3.4	11
180	GABAB-Agonistic Activity of Certain Baclofen Homologues. Molecules, 2013, 18, 10266-10284.	3.8	10

#	Article	IF	CITATIONS
181	Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method. Scientific Reports, 2017, 7, 4829.	3.3	10
182	Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Scientific Reports, 2019, 9, 3802.	3.3	10
183	Pharmacological characterization of homobaclofen on wild type and mutant GABAB1b receptors coexpressed with the GABAB2 receptor. European Journal of Pharmacology, 2001, 417, 177-180.	3.5	9
184	Synthesis and pharmacology of 3-hydroxy-Δ2-isoxazoline-cyclopentane analogues of glutamic acid. Il Farmaco, 2002, 57, 889-895.	0.9	9
185	Carbamoylcholine homologs: synthesis and pharmacology at nicotinic acetylcholine receptors. European Journal of Pharmacology, 2004, 497, 125-137.	3.5	9
186	Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: Synthesis, modelling and molecular pharmacology. Bioorganic and Medicinal Chemistry, 2005, 13, 5391-5398.	3.0	9
187	Activity of l-α-amino acids at the promiscuous goldfish odorant receptor 5.24. European Journal of Pharmacology, 2006, 536, 98-101.	3.5	9
188	A highly selective agonist for the metabotropic glutamate receptor mGluR2. MedChemComm, 2011, 2, 1120.	3.4	9
189	Transmembrane α-Helix 2 and 7 Are Important for Small Molecule-Mediated Activation of the GLP-1 Receptor. Pharmacology, 2011, 88, 340-348.	2.2	9
190	Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics, 2017, 33, 1116-1120.	4.1	9
191	Probing the Existence of a Metastable Binding Site at the β ₂ -Adrenergic Receptor with Homobivalent Bitopic Ligands. Journal of Medicinal Chemistry, 2019, 62, 7806-7839.	6.4	9
192	New analogues of ACPD with selective activity for group II metabotropic glutamate receptors. European Journal of Pharmacology, 1997, 332, 327-331.	3.5	8
193	Characterization of the effects of four HTR3B polymorphisms on human 5-HT3AB receptor expression and signalling. Pharmacogenetics and Genomics, 2008, 18, 1027-1040.	1.5	8
194	Identification of the first surrogate agonists for the G protein-coupled receptor GPR132. RSC Advances, 2015, 5, 48551-48557.	3.6	8
195	Radiosynthesis and characterisation of a potent and selective GPR139 agonist radioligand. RSC Advances, 2016, 6, 947-952.	3.6	8
196	Selective Antagonists at Group I Metabotropic Glutamate Receptors:  Synthesis and Molecular Pharmacology of 4-Aryl-3-isoxazolol Amino Acids. Journal of Medicinal Chemistry, 2002, 45, 988-991.	6.4	7
197	Synthesis of the calcilytic ligand NPS 2143. Beilstein Journal of Organic Chemistry, 2013, 9, 1383-1387.	2.2	7
198	Mutational Landscape of the Proglucagon-Derived Peptides. Frontiers in Endocrinology, 2021, 12, 698511.	3.5	7

#	Article	IF	CITATIONS
199	Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids. Current Pharmaceutical Design, 2014, 20, 2693-2702.	1.9	7
200	Synthesis and pharmacology of N-alkylated derivatives of the excitotoxin ibotenic acid. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1563-1568.	2.2	6
201	Design of Cyclopentaisoxazoline Amino Acids as Conformationally Constrained Agonists at Glutamate Receptors. European Journal of Organic Chemistry, 2003, 2003, 4455-4461.	2.4	6
202	Synthesis, theoretical and structural analyses, and enantiopharmacology of 3-carboxy homologs of AMPA. Chirality, 2004, 16, 452-466.	2.6	6
203	A new metabotropic glutamate receptor agonist with in vivo anti-allodynic activity. Bioorganic and Medicinal Chemistry, 2010, 18, 6089-6098.	3.0	6
204	Glutamate receptor ligands: Synthesis, stereochemistry, and enantiopharmacology of methylated 2-aminoadipic acid analogs. Chirality, 2002, 14, 351-363.	2.6	5
205	Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias. Molecular Pharmacology, 2021, 99, 328-341.	2.3	5
206	Synthesis and muscarinic receptor pharmacology of a series of 4,5,6,7-tetrahydroisothiazolo[4,5-c]pyridine bioisosteres of arecoline. Bioorganic and Medicinal Chemistry, 1999, 7, 795-809.	3.0	4
207	Rigid nonproteinogenic cyclic amino acids as ligands for glutamate receptors:trans-Tris(homoglutamic) acids. Chirality, 2005, 17, 99-107.	2.6	4
208	Heterozygous Mutation (Q459R) in the Calcium-Sensing Receptor Gene Causes Familial Hypocalciuric Hypercalcemia 1 (FHH1). Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1322-e1330.	3.6	4
209	Delineation of the GPR15 receptorâ€mediated Gα protein signalling profile in recombinant mammalian cells. Basic and Clinical Pharmacology and Toxicology, 2022, 131, 104-113.	2.5	4
210	Synthesis of NovelN1-Substituted Bicyclic Pyrazole Amino Acids and Evaluation of Their Interaction with Glutamate Receptors. Chemistry and Biodiversity, 2005, 2, 748-757.	2.1	3
211	GABA and Glutamate Receptor Ligands and Their Therapeutic Potential in CNS Disorders. , 2005, , 797-907.		3
212	The GABAB Receptor. , 2004, , 129-144.		3
213	Label-free dynamic mass redistribution analysis of endogenous adrenergic receptor signaling in primary preadipocytes and differentiated adipocytes. Journal of Pharmacological and Toxicological Methods, 2019, 97, 59-66.	0.7	2
214	G protein oupled receptor pharmacology—The next generation. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 3-4.	2.5	2
215	Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
216	Class C Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2

#	Article	IF	CITATIONS
217	Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
218	Introduction to Special Issue in Honor of Professor Povl Krogsgaard-Larsen. Neurochemical Research, 2014, 39, 1845-1846.	3.3	0
219	Metabotropic glutamate receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
220	Calcium-sensing receptor in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
221	Calcium-sensing receptor (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	0