
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2152405/publications.pdf Version: 2024-02-01

DETER LANCRIDGE

#	Article	IF	CITATIONS
1	Breeding Technologies to Increase Crop Production in a Changing World. Science, 2010, 327, 818-822.	12.6	1,795
2	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416
3	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
4	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
5	Feeding the future. Nature, 2013, 499, 23-24.	27.8	464
6	Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 2010, 61, 3211-3222.	4.8	461
7	Boron-Toxicity Tolerance in Barley Arising from Efflux Transporter Amplification. Science, 2007, 318, 1446-1449.	12.6	422
8	Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011, 9, 230-249.	8.3	389
9	Extraction of nucleic acids from agarose gels. Analytical Biochemistry, 1980, 103, 264-271.	2.4	376
10	Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level. Molecular Plant, 2012, 5, 418-429.	8.3	370
11	Cereal breeding takes a walk on the wild side. Trends in Genetics, 2008, 24, 24-32.	6.7	355
12	The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588, 284-289.	27.8	314
13	A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics, 2007, 114, 1091-1103.	3.6	308
14	Early Flowering as a Drought Escape Mechanism in Plants: How Can It Aid Wheat Production?. Frontiers in Plant Science, 2017, 8, 1950.	3.6	302
15	Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 2008, 59, 3327-3346.	4.8	285
16	Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 2005, 168, 195-202.	3.6	266
17	In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular and Molecular Biology Letters, 2002, 7, 537-46.	7.0	264
18	Physiological breeding. Current Opinion in Plant Biology, 2016, 31, 162-171.	7.1	249

#	Article	IF	CITATIONS
19	Can genomics boost productivity of orphan crops?. Nature Biotechnology, 2012, 30, 1172-1176.	17.5	248
20	Marker-assisted wheat breeding: present status and future possibilities. Molecular Breeding, 2010, 26, 145-161.	2.1	245
21	Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theoretical and Applied Genetics, 2012, 125, 1473-1485.	3.6	243
22	Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. Journal of Experimental Botany, 2013, 64, 5411-5428.	4.8	239
23	Extreme Population-Dependent Linkage Disequilibrium Detected in an Inbreeding Plant Species, Hordeum vulgare. Genetics, 2006, 172, 557-567.	2.9	229
24	Phenotyping approaches for physiological breeding and gene discovery in wheat. Annals of Applied Biology, 2009, 155, 309-320.	2.5	224
25	Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theoretical and Applied Genetics, 1991, 82, 209-216.	3.6	203
26	Making the most of â€~omics' for crop breeding. Trends in Biotechnology, 2011, 29, 33-40.	9.3	199
27	The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	4.8	195
28	Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theoretical and Applied Genetics, 2007, 115, 1029-1041.	3.6	191
29	Zinc Deficiency Up-Regulates Expression of High-Affinity Phosphate Transporter Genes in Both Phosphate-Sufficient and -Deficient Barley Roots. Plant Physiology, 2000, 124, 415-422.	4.8	174
30	An Investigation of Boron Toxicity in Barley Using Metabolomics. Plant Physiology, 2006, 142, 1087-1101.	4.8	174
31	Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Applied and Environmental Microbiology, 1995, 61, 461-467.	3.1	171
32	Metabolite Profiling Reveals Distinct Changes in Carbon and Nitrogen Metabolism in Phosphate-Deficient Barley Plants (Hordeum vulgare L.). Plant and Cell Physiology, 2008, 49, 691-703.	3.1	169
33	Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;1 Â. Plant Physiology, 2010, 153, 1706-1715.	4.8	159
34	RFLP mapping of manganese efficiency in barley. Theoretical and Applied Genetics, 2000, 101, 1100-1108.	3.6	157
35	Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theoretical and Applied Genetics, 1991, 82, 537-544.	3.6	153
36	Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 97, 238-245.	3.6	145

PETER LANGRIDGE

#	Article	IF	CITATIONS
37	Trends in genetic and genome analyses in wheat: a review. Australian Journal of Agricultural Research, 2001, 52, 1043.	1.5	141
38	The genetic control of milling yield, dough rheology and baking quality of wheat. Theoretical and Applied Genetics, 2006, 112, 1487-1495.	3.6	141
39	Modulation of plant growth by HDâ€Zip class I and II transcription factors in response to environmental stimuli. New Phytologist, 2011, 190, 823-837.	7.3	139
40	Cloning and characterisation of a new rye-specific repeated sequence. Genome, 1991, 34, 81-87.	2.0	138
41	An atlas of gene expression from seed to seed through barley development. Functional and Integrative Genomics, 2006, 6, 202-211.	3.5	138
42	Largeâ€scale analysis of the barley transcriptome based on expressed sequence tags. Plant Journal, 2004, 40, 276-290.	5.7	137
43	The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant Journal, 2005, 41, 660-672.	5.7	136
44	Differential expression of micro <scp>RNA</scp> s and other small <scp>RNA</scp> s in barley between water and drought conditions. Plant Biotechnology Journal, 2015, 13, 2-13.	8.3	134
45	Decreasing acetic acid accumulation by a glycerol overproducing strain ofSaccharomyces cerevisiae by deleting theALD6 aldehyde dehydrogenase gene. Yeast, 2002, 19, 295-301.	1.7	132
46	HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp.) Tj ETQq0	О <u>Ş</u> ggBT	Overlock 10
47	Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theoretical and Applied Genetics, 2012, 125, 255-271.	3.6	132
48	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	5.3	130
49	<scp>CRISPR</scp> /Cas9â€mediated knockout of <i>Ms1</i> enables the rapid generation of maleâ€sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 2019, 17, 1905-1913.	8.3	125
50	Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 2015, 32, 130-135.	6.6	124
51	The impact of drought on wheat leaf cuticle properties. BMC Plant Biology, 2017, 17, 85.	3.6	120
52	Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics, 2011, 12, 129.	2.8	118
53	Thermostability variation in alleles of barley beta-amylase. Journal of Cereal Science, 1998, 28, 301-309.	3.7	117

A zein gene of maize is transcribed from two widely separated promoter regions. Cell, 1983, 34, 28.9 116 1015-1022.

#	Article	IF	CITATIONS
55	Whole-Genome Mapping of Agronomic and Metabolic Traits to Identify Novel Quantitative Trait Loci in Bread Wheat Grown in a Water-Limited Environment. Plant Physiology, 2013, 162, 1266-1281.	4.8	115
56	Construction of three linkage maps in bread wheat, Triticum aestivum. Australian Journal of Agricultural Research, 2001, 52, 1089.	1.5	114
57	Increased expression of six <i>ZIP</i> family genes by zinc (Zn) deficiency is associated with enhanced uptake and rootâ€toâ€shoot translocation of Zn in barley (<i>Hordeum vulgare</i>). New Phytologist, 2015, 207, 1097-1109.	7.3	114
58	Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics & Proteomics, 2006, 4, 343-354.	3.8	113
59	<scp>H</scp> v <scp>ZIP</scp> 7 mediates zinc accumulation in barley (<i><scp>H</scp>ordeum) Tj ETQq1 1 0.</i>	784314 rg	BT_/Overlock
60	A consensus linkage map of barley. Molecular Breeding, 1995, 1, 389-395.	2.1	111
61	Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 1999, 98, 1293-1303.	3.6	107
62	Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theoretical and Applied Genetics, 2006, 113, 239-250.	3.6	107
63	A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions. DNA Research, 2013, 20, 109-125.	3.4	106
64	Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature, 2014, 514, 88-91.	27.8	106
65	Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, <i>IPS1</i> , in Barley Â. Plant Physiology, 2011, 156, 1217-1229.	4.8	105
66	TaASY1 promotes homologous chromosome interactions and is affected by deletion of <i>Ph1</i> . Plant Journal, 2009, 57, 487-497.	5.7	104
67	Nucleotide sequence of a circular single-stranded DNA associated with coconut foliar decay virus. Virology, 1990, 176, 648-651.	2.4	103
68	Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical and Applied Genetics, 1998, 96, 435-446.	3.6	103
69	Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Clomus intraradices. New Phytologist, 1997, 135, 291-301.	7.3	100
70	AFLP fingerprinting for analysis of yeast genetic variation. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 915-924.	1.7	100
71	Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theoretical and Applied Genetics, 2000, 101, 767-777.	3.6	100
72	Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biology, 2013, 13, 214.	3.6	94

#	Article	IF	CITATIONS
73	Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports, 2017, 7, 1300.	3.3	94
74	A consensus map of barley integrating SSR, RFLP, and AFLP markers. Australian Journal of Agricultural Research, 2003, 54, 1173.	1.5	89
75	Differentiation and species identification of yeasts using PCR. International Journal of Systematic Bacteriology, 1998, 48, 279-286.	2.8	87
76	Abiotic stress miRNomes in the Triticeae. Functional and Integrative Genomics, 2017, 17, 145-170.	3.5	86
77	Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theoretical and Applied Genetics, 2014, 127, 1607-1624.	3.6	85
78	Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 2006, 7, 267.	2.8	82
79	Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nature Communications, 2017, 8, 869.	12.8	82
80	A study of the role of root morphological traits in growth of barley in zinc-deficient soil. Journal of Experimental Botany, 2007, 58, 2775-2784.	4.8	80
81	The <i>Ta<scp>DREB</scp>3</i> transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnology Journal, 2016, 14, 313-322.	8.3	80
82	Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theoretical and Applied Genetics, 2013, 126, 747-761.	3.6	77
83	A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms Â. Plant Physiology, 2014, 164, 412-423.	4.8	77
84	Self-incompatibility in the Grasses. Annals of Botany, 2000, 85, 203-209.	2.9	76
85	Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theoretical and Applied Genetics, 2012, 124, 697-711.	3.6	76
86	Optimization of <scp><i>TaDREB3</i></scp> gene expression in transgenic barley using coldâ€inducible promoters. Plant Biotechnology Journal, 2013, 11, 659-670.	8.3	76
87	Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant Journal, 1992, 2, 631-638.	5.7	73
88	The <i>Ph2</i> pairing homoeologous locus of wheat (<i>Triticum aestivum</i>): identification of candidate meiotic genes using a comparative genetics approach. Plant Journal, 2003, 36, 443-456.	5.7	73
89	Differential expression of microRNAs and potential targets under drought stress in barley. Plant, Cell and Environment, 2017, 40, 11-24.	5.7	73
90	STS-PCR markers appropriate for wheat-barley introgression. Theoretical and Applied Genetics, 1996, 93-93, 826-832.	3.6	72

#	Article	IF	CITATIONS
91	A barley activation tagging system. Plant Molecular Biology, 2007, 64, 329-347.	3.9	72
92	Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Science, 2015, 233, 143-154.	3.6	72
93	Tetrapyrroleâ€based drought stress signalling. Plant Biotechnology Journal, 2015, 13, 447-459.	8.3	71
94	Breeding for drought and heat tolerance in wheat. Theoretical and Applied Genetics, 2021, 134, 1753-1769.	3.6	70
95	RFLP mapping of the Ha 2 cereal cyst nematode resistance gene in barley. Theoretical and Applied Genetics, 1997, 94, 1060-1064.	3.6	69
96	Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theoretical and Applied Genetics, 2007, 115, 1015-1027.	3.6	69
97	Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding, 2003, 122, 52-56.	1.9	68
98	Comparative Sequence Analysis of the Region Harboring the Hardness Locus in Barley and Its Colinear Region in Rice. Plant Physiology, 2004, 136, 3177-3190.	4.8	68
99	Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. Journal of Experimental Botany, 2015, 66, 5481-5492.	4.8	67
100	Identification of Reference Genes for Quantitative Expression Analysis of MicroRNAs and mRNAs in Barley under Various Stress Conditions. PLoS ONE, 2015, 10, e0118503.	2.5	67
101	Identification of genetic loci associated with ear-emergence in bread wheat. Theoretical and Applied Genetics, 2006, 113, 1103-1112.	3.6	66
102	A Comparison of Mainstream Genotyping Platforms for the Evaluation and Use of Barley Genetic Resources. Frontiers in Plant Science, 2019, 10, 544.	3.6	66
103	RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theoretical and Applied Genetics, 1994, 89-89, 1039-1045.	3.6	62
104	Comparative transcriptomics in the Triticeae. BMC Genomics, 2009, 10, 285.	2.8	62
105	Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional and Integrative Genomics, 2017, 17, 279-292.	3.5	62
106	Identification and mapping of a gene conferring resistance to the spot form of net blotch (Pyrenophora teres f maculata) in barley. Theoretical and Applied Genetics, 1999, 99, 323-327.	3.6	60
107	TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biology, 2007, 7, 67.	3.6	60
108	QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theoretical and Applied Genetics, 2020, 133, 239-257.	3.6	59

#	Article	IF	CITATIONS
109	Squashes of plant tissue as substrate for PCR. Nucleic Acids Research, 1991, 19, 6954-6954.	14.5	57
110	Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Australian Journal of Grape and Wine Research, 2000, 6, 208-215.	2.1	57
111	Constitutive overexpression of the <i>TaNF-YB4</i> gene in transgenic wheat significantly improves grain yield. Journal of Experimental Botany, 2015, 66, 6635-6650.	4.8	56
112	gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnology, 2019, 19, 71.	3.3	55
113	Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theoretical and Applied Genetics, 2007, 115, 451-461.	3.6	53
114	Harnessing the potential of germplasm collections. Nature Genetics, 2019, 51, 200-201.	21.4	53
115	The incidence of killer activity of non-Saccharomycesyeasts towards indigenous yeast species of grape must: potential application in wine fermentation. Journal of Applied Microbiology, 2000, 89, 381-389.	3.1	52
116	Mutations of barley β-amylase that improve substrate-binding affinity and thermostability. Molecular Genetics and Genomics, 2001, 266, 345-352.	2.1	52
117	Identification of RFLP markers linked to the cereal cyst nematode resistance gene (Cre) in wheat. Theoretical and Applied Genetics, 1994, 89-89, 927-930.	3.6	51
118	Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Australian Journal of Agricultural Research, 2003, 54, 1197.	1.5	51
119	Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods, 2006, 2, 3.	4.3	51
120	Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics, 2012, 13, 492.	2.8	51
121	A DNA mismatch repair gene links to the <i>Ph2</i> locus in wheat. Genome, 2002, 45, 116-124.	2.0	50
122	Overexpression of the <i>TaSHN1</i> transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. Plant, Cell and Environment, 2018, 41, 2549-2566.	5.7	50
123	RFLP mapping of a new cereal cyst nematode resistance locus in barley. Plant Breeding, 1998, 117, 185-187.	1.9	48
124	A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biology, 2018, 18, 135.	3.6	48
125	Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnology Journal, 2010, 8, 47-64.	8.3	47
126	Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Molecular Biology, 2009, 71, 81-98.	3.9	46

#	Article	IF	CITATIONS
127	BAC library resources for map-based cloning and physical map construction in barley (Hordeum) Tj ETQq1 1 0.78	4314 rgB⁻ 2.8	T/Qyerlock 10
128	Analysis of rye B-chromosome structure using fluorescencein situ hybridization (FISH). Chromosome Research, 1995, 3, 466-472.	2.2	45
129	Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnology Journal, 2012, 10, 703-708.	8.3	45
130	Advantages of Amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biology, 2017, 17, 254.	3.6	45
131	An early meiosis cDNA clone from wheat. Molecular Genetics and Genomics, 1994, 243, 17-23.	2.4	44
132	Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Molecular Biology, 2007, 8, 65.	3.0	43
133	Dynamic root responses to drought and rewatering in two wheat (Triticum aestivum) genotypes. Plant and Soil, 2015, 391, 139-152.	3.7	43
134	Salinity tolerance and sodium exclusion in genus Triticum. Breeding Science, 2009, 59, 671-678.	1.9	43
135	Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Molecular Breeding, 1999, 5, 561-568.	2.1	42
136	Application of Genomics to Molecular Breeding of Wheat and Barley. Advances in Genetics, 2007, 58, 121-155.	1.8	42
137	Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field. Plant Physiology, 2017, 174, 1669-1682.	4.8	42
138	Synthesis of the large subunit of spinach ribulose bisphosphate carboxylase may involve a precursor polypeptide. FEBS Letters, 1981, 123, 85-89.	2.8	41
139	Thioredoxin activity in the C terminus of Phalaris S protein. Plant Journal, 1995, 8, 133-138.	5.7	41
140	Title is missing!. Molecular Breeding, 2000, 6, 169-174.	2.1	41
141	Isolation and characterization of wheat triticin cDNA revealing a unique lysine-rich repetitive domain. Plant Molecular Biology, 1993, 22, 227-237.	3.9	40
142	Zein precursor mRNAs from maize endosperm. Molecular Genetics and Genomics, 1982, 187, 432-438.	2.4	39
143	Structural heterogeneity in the R173 family of rye-specific repetitive DNA sequences. Plant Molecular Biology, 1992, 20, 95-102.	3.9	39
144	Capturing diversity in the cereals: many options but little promiscuity. Trends in Plant Science, 2007, 12, 71-79.	8.8	39

#	Article	IF	CITATIONS
145	Transcriptional effects of the opaque-2 mutation of Zea mays L Planta, 1982, 156, 166-170.	3.2	38
146	Spatial and temporal expression of endosperm transfer cellâ€specific promoters in transgenic rice and barley. Plant Biotechnology Journal, 2008, 6, 465-476.	8.3	38
147	Green revolution â€~stumbles' in a dry environment: Dwarf wheat with <i>Rht</i> genes fails to produce higher grain yield than taller plants under drought. Plant, Cell and Environment, 2020, 43, 2355-2364.	5.7	38
148	Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Molecular Biology, 1997, 34, 223-232.	3.9	36
149	MappedDs/T-DNA launch pads for functional genomics in barley. Plant Journal, 2006, 47, 811-826.	5.7	36
150	The R173 family of rye-specific repetitive DNA sequences: a structural analysis. Genome, 1991, 34, 88-95.	2.0	34
151	Complex Regulation by Apetala2 Domain-Containing Transcription Factors Revealed through Analysis of the Stress-Responsive TdCor410b Promoter from Durum Wheat. PLoS ONE, 2013, 8, e58713.	2.5	34
152	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	5.2	34
153	Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome, 1992, 35, 621-626.	2.0	33
154	Cloning and expression of a distinct subclass of plant thioredoxins. FEBS Journal, 2000, 267, 7109-7117.	0.2	33
155	Comparative Enzyme Kinetics of Two Allelic Forms of Barley (Hordeum vulgare L.) Beta -amylase. Journal of Cereal Science, 2000, 31, 335-344.	3.7	33
156	A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs. PLoS ONE, 2012, 7, e42030.	2.5	33
157	Isolation and characterization of a genomic sequence of maize coding for a zein gene. Molecular Genetics and Genomics, 1981, 182, 440-444.	2.4	32
158	Change of function of the wheat stressâ€responsive transcriptional repressor <i>Ta<scp>RAP</scp>2.1L</i> by repressor motif modification. Plant Biotechnology Journal, 2016, 14, 820-832.	8.3	32
159	Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biology, 2017, 17, 209.	3.6	32
160	Removal of the Four C-Terminal Glycine-Rich Repeats Enhances the Thermostability and Substrate Binding Affinity of Barley β-Amylase. Biochemistry, 2000, 39, 13350-13355.	2.5	31
161	Mapping of Barley (Hordeum vulgare L.) Beta -amylase Alleles in which an Amino Acid Substitution Determines Beta -amylase Isoenzyme Type and the Level of Free Beta -amylase. Journal of Cereal Science, 2002, 35, 39-50.	3.7	31
162	Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica, 2002, 124, 293-306.	1.2	31

#	Article	IF	CITATIONS
163	Evaluation of Australian wheat genotypes for response to variable nitrogen application. Plant and Soil, 2016, 399, 247-255.	3.7	31
164	Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Plant Molecular Biology, 2016, 90, 435-452.	3.9	31
165	Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Molecular Biology, 2012, 80, 299-314.	3.9	29
166	A DNA-based method for studying root responses to drought in field-grown wheat genotypes. Scientific Reports, 2013, 3, 3194.	3.3	29
167	A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR. Theoretical and Applied Genetics, 1998, 97, 1000-1012.	3.6	28
168	Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany, 2021, 72, 5134-5157.	4.8	28
169	Modes of reproduction in Australian populations of Hypericum perforatum L. (St. John's wort) revealed by DNA fingerprinting and cytological methods. Genome, 2003, 46, 573-579.	2.0	27
170	High-resolution mapping of the S and Z loci of Phalaris coerulescens. Genome, 2004, 47, 918-930.	2.0	27
171	Wheat genomics and the ambitious targets for future wheat production. Genome, 2013, 56, 545-547.	2.0	27
172	A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant Journal, 1996, 10, 505-513.	5.7	26
173	The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome, 2008, 51, 963-971.	2.0	26
174	Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breeding Science, 2010, 60, 426-435.	1.9	26
175	Germanium as a tool to dissect boron toxicity effects in barley and wheat. Functional Plant Biology, 2013, 40, 618.	2.1	26
176	The homeodomain transcription factor Ta HDZ iplâ $\in 2$ from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytologist, 2016, 211, 671-687.	7.3	26
177	Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2016, 129, 1139-1151.	3.6	26
178	Breeding crops for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1607-1611.	3.6	26
179	Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC Plant Biology, 2014, 14, 258.	3.6	25
180	The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population. PLoS ONE, 2016, 11, e0159371.	2.5	25

#	Article	IF	CITATIONS
181	Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application. PLoS ONE, 2016, 11, e0159374.	2.5	25
182	Identification of legumin-like proteins in wheat. Plant Molecular Biology, 1988, 11, 633-639.	3.9	24
183	Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan. Frontiers in Plant Science, 2016, 7, 1736.	3.6	24
184	Subunit and cofactor binding of Saccharomyces cerevisiae sulfite reductase - towards developing wine yeast with lowered ability to produce hydrogen sulfide. Australian Journal of Grape and Wine Research, 2003, 9, 186-193.	2.1	22
185	A rapid method of preparing megabase plant DNA. Nucleic Acids Research, 1990, 18, 4955-4955.	14.5	21
186	Wild sex in the grasses. Trends in Plant Science, 2006, 11, 261-263.	8.8	21
187	Genetic control of processing quality in a bread wheat mapping population grown in water-limited environments. Journal of Cereal Science, 2013, 57, 304-311.	3.7	21
188	Genes Encoding Transcription Factors TaDREB5 and TaNFYC-A7 Are Differentially Expressed in Leaves of Bread Wheat in Response to Drought, Dehydration and ABA. Frontiers in Plant Science, 2018, 9, 1441.	3.6	21
189	Isolation and characterization of maize genes coding for zein proteins of the 21000 dalton size class. Nucleic Acids Research, 1982, 10, 3845-3860.	14.5	20
190	Reinventing the Green Revolution by Harnessing Crop Mutant Resources. Plant Physiology, 2014, 166, 1682-1683.	4.8	20
191	Genetic control of grain protein, dough rheology traits and loaf traits in a bread wheat population grown in three environments. Journal of Cereal Science, 2015, 64, 147-152.	3.7	20
192	Economic and Academic Importance of Barley. Compendium of Plant Genomes, 2018, , 1-10.	0.5	20
193	Novel Salinity Tolerance Loci in Chickpea Identified in Glasshouse and Field Environments. Frontiers in Plant Science, 2021, 12, 667910.	3.6	20
194	Endosperm transfer cell-specific genes and proteins: structure, function and applications in biotechnology. Frontiers in Plant Science, 2014, 5, 64.	3.6	19
195	Genetic drift and host-mediated selection cause genetic differentiation among Gaeumannomyces graminis populations infecting cereals in southern Australia. Mycological Research, 2001, 105, 927-935.	2.5	18
196	Salinity tolerance and Na ⁺ exclusion in wheat: variability, genetics, mapping populations and QTL analysis. Czech Journal of Genetics and Plant Breeding, 2011, 47, S85-S93.	0.8	18
197	Firefighter feedback during active cooling: A useful tool for heat stress management?. Journal of Thermal Biology, 2014, 46, 65-71.	2.5	18
198	A segment of rye chromosome 1 enhances growth and embryogenesis of calli derived from immature embryos of wheat. Plant Cell Reports, 1991, 10, 148-51.	5.6	17

#	Article	IF	CITATIONS
199	Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome, 1996, 39, 798-801.	2.0	17
200	The Principle: Identification and Application of Molecular Markers. , 2004, , 3-22.		17
201	Systematic identification of factors involved in post-transcriptional processes in wheat grain. Plant Molecular Biology, 2006, 62, 637-653.	3.9	17
202	Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. Journal of Experimental Botany, 2012, 63, 2025-2040.	4.8	17
203	Revisiting and Revising the Self-Incompatibility Genetics of Phalaris coerulescens. Plant Cell, 1999, 11, 1826-1826.	6.6	16
204	The scutellar vascular bundle–specific promoter of the wheat HDâ€Zip IV transcription factor shows similar spatial and temporal activity in transgenic wheat, barley and rice. Plant Biotechnology Journal, 2012, 10, 43-53.	8.3	15
205	Coronary Heart Disease Risk in Volunteer Firefighters in Victoria, Australia. Archives of Environmental and Occupational Health, 2014, 69, 112-120.	1.4	15
206	New eSSR and gSSR markers added to Australian barley maps. Australian Journal of Agricultural Research, 2006, 57, 953.	1.5	14
207	Construction of a barley bacterial artificial chromosome library suitable for cloning genes for boron tolerance, sodium exclusion and high grain zinc content . Plant Breeding, 2010, 129, 291-296.	1.9	14
208	Intracellular Vesicle Trafficking Genes, RabC-GTP, Are Highly Expressed Under Salinity and Rapid Dehydration but Down-Regulated by Drought in Leaves of Chickpea (Cicer arietinum L.). Frontiers in Genetics, 2019, 10, 40.	2.3	14
209	The General Transcription Repressor TaDr1 Is Co-expressed With TaVrn1 and TaFT1 in Bread Wheat Under Drought. Frontiers in Genetics, 2019, 10, 63.	2.3	14
210	The pseudogenes of barley. Plant Journal, 2018, 93, 502-514.	5.7	14
211	Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco. Theoretical and Applied Genetics, 2009, 119, 695-704.	3.6	13
212	Salt-induced expression of intracellular vesicle trafficking genes, CaRab-GTP, and their association with Na+ accumulation in leaves of chickpea (Cicer arietinum L.). BMC Plant Biology, 2020, 20, 183.	3.6	13
213	Developments and prospects for doubled haploid wheat. Biotechnology Advances, 2022, 60, 108007.	11.7	13
214	[1] Megabase DNA preparation from plant tissue. Methods in Enzymology, 1992, 216, 3-12.	1.0	12
215	Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. BMC Genomics, 2010, 11, 382.	2.8	12
216	A Single Amino Acid Substitution that Determines IEF Band Pattern of Barley Beta -amylase. Journal of Cereal Science, 2002, 35, 79-84.	3.7	11

#	Article	IF	CITATIONS
217	Unfashionable crop species flourish in the 21st century. Genome Biology, 2004, 5, 233.	9.6	11
218	Genes mapping to boron tolerance QTL in barley identified by suppression subtractive hybridization. Plant, Cell and Environment, 2010, 33, 188-198.	5.7	11
219	Decoding our daily bread. Nature, 2012, 491, 678-680.	27.8	11
220	Reduced response diversity does not negatively impact wheat climate resilience. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10623-10624.	7.1	11
221	ldentification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress-associated genes, HvSAP, in salt stressed barley from Kazakhstan. BMC Plant Biology, 2020, 20, 156.	3.6	11
222	The wheat <i>Seven in absentia</i> gene is associated with increases in biomass and yield in hot climates. Journal of Experimental Botany, 2021, 72, 3774-3791.	4.8	11
223	Understanding the Interactions between Biomass, Grain Production and Grain Protein Content in High and Low Protein Wheat Genotypes under Controlled Environments. Agronomy, 2019, 9, 706.	3.0	10
224	Strengths and Weaknesses of National Variety Trial Data for Multi-Environment Analysis: A Case Study on Grain Yield and Protein Content. Agronomy, 2020, 10, 753.	3.0	10
225	Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment. PLoS ONE, 2017, 12, e0178111.	2.5	10
226	Cloning a Putative Self-Incompatibility Gene from the Pollen of the Grass Phalaris coerulescens. Plant Cell, 1994, 6, 1923.	6.6	9
227	WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. Functional Plant Biology, 2005, 32, 249.	2.1	9
228	Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Functional and Integrative Genomics, 2006, 7, 37-52.	3.5	9
229	Modelâ€Driven Multidisciplinary Global Research to Meet Future Needs: The Case for "Improving Radiation Use Efficiency to Increase Yield― Crop Science, 2019, 59, 843-849.	1.8	9
230	Development of an Australian Bread Wheat Nested Association Mapping Population, a New Genetic Diversity Resource for Breeding under Dry and Hot Climates. International Journal of Molecular Sciences, 2021, 22, 4348.	4.1	9
231	Expression of Specific Alleles of Zinc-Finger Transcription Factors, HvSAP8 and HvSAP16, and Corresponding SNP Markers, Are Associated with Drought Tolerance in Barley Populations. International Journal of Molecular Sciences, 2021, 22, 12156.	4.1	9
232	Isolation of lambda and YAC clones from defined regions of the rye genome. Molecular Genetics and Genomics, 1998, 257, 568-575.	2.4	8
233	Physical Localization of rRNA Genes by Two-Colour Fluorescent In-Situ Hybridization and Sequence Analysis of the 5s rRNA Gene in Phalaris Coerulescens. Hereditas, 2004, 126, 289-294.	1.4	8
234	A simple hybridization-based strategy for the generation of non-redundant EST collections—a case study in barley (Hordeum vulgare L.). Plant Science, 2004, 167, 629-634.	3.6	8

#	Article	IF	CITATIONS
235	Genetic Mapping in the Triticeae. , 2009, , 201-235.		8
236	Generation of different sizes and classes of small RNAs in barley is locus, chromosome and/or cultivar-dependent. BMC Genomics, 2016, 17, 735.	2.8	7
237	Barley Plants Overexpressing Ferrochelatases (HvFC1 and HvFC2) Show Improved Photosynthetic Rates and Have Reduced Photo-Oxidative Damage under Drought Stress than Non-Transgenic Controls. Agronomy, 2020, 10, 1351.	3.0	7
238	Wheat. , 2006, , 79-134.		6
239	Expression patterns and protein structure of a lipid transfer protein END1 from Arabidopsis. Planta, 2014, 240, 1319-1334.	3.2	6
240	Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. Plant Molecular Biology, 2019, 101, 41-61.	3.9	6
241	Functional Genomics of Seed Development in Cereals. , 2013, , 215-245.		5
242	Endopolyploidy levels in barley vary in different root types and significantly decrease under phosphorus deficiency. Plant Physiology and Biochemistry, 2017, 118, 11-21.	5.8	5
243	Plant genome sequencing. , 2012, , 83-97.		3
244	Letter to the editor. Food and Chemical Toxicology, 2013, 53, 441.	3.6	3
245	Micronutrient Toxicity and Deficiency. , 2022, , 433-449.		2
246	A study of the role of root morphological traits in growth of barley in zinc-deficient soil. Journal of Experimental Botany, 2007, 58, 4017-4017.	4.8	1
247	Meeting Report The Aaronsohn-ITMI International Conference. Israel Journal of Plant Sciences, 2007, 55, 315-319.	0.5	1
248	A Simple TAE-Based Method to Generate Large Insert BAC Libraries from Plant Species. Methods in Molecular Biology, 2009, 513, 57-80.	0.9	1
249	Genomics of Wheat, the Basis of Our Daily Bread. , 2008, , 515-548.		1
250	Crops aren't invasive. New Scientist, 2008, 197, 24.	0.0	0
251	Agronomy—A Multidisciplinary and Open Access Journal. Agronomy, 2011, 1, 1-2.	3.0	0
252	Biotechnology for enhancing plant production and food quality: IBS 2010 part III. Journal of Biotechnology, 2012, 159, 249-250.	3.8	0

#	Article	IF	CITATIONS
253	Boron toxicity and deficiency in Triticeae: Update on tolerance mechanisms and transporters. New Biotechnology, 2012, 29, S137.	4.4	ο
254	Altering Tetrapyrrole Biosynthesis by Overexpressing Ferrochelatases (Fc1 and Fc2) Improves Photosynthetic Efficiency in Transgenic Barley. Agronomy, 2020, 10, 1370.	3.0	0
255	From Genome Structure to Pragmatic Breeding of Wheat and Barley. Stadler Genetics Symposia Series, 2000, , 197-209.	0.0	Ο
256	Functional Genomics of Seed Development in Cereals. , 2004, , 447-481.		0