List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paralysis of skeletal muscle by butanedione monoxime, a chemical phosphatase. Pflugers Archiv European Journal of Physiology, 1988, 411, 76-79.	2.8	252
2	The Glutathione Transferase Structural Family Includes a Nuclear Chloride Channel and a Ryanodine Receptor Calcium Release Channel Modulator. Journal of Biological Chemistry, 2001, 276, 3319-3323.	3.4	248
3	Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Human Molecular Genetics, 2005, 14, 2189-2200.	2.9	247
4	Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Progress in Biophysics and Molecular Biology, 2004, 85, 33-69.	2.9	240
5	The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths Journal of Physiology, 1975, 250, 513-539.	2.9	214
6	Low resistance junctions in crayfish. Structural changes with functional uncoupling Journal of Cell Biology, 1976, 70, 419-439.	5.2	197
7	Magnesium Inhibition of Ryanodine-Receptor Calcium Channels: Evidence for Two Independent Mechanisms. Journal of Membrane Biology, 1997, 156, 213-229.	2.1	174
8	Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology, 1995, 147, 7-22.	2.1	155
9	Calsequestrin Is an Inhibitor of Skeletal Muscle Ryanodine Receptor Calcium Release Channels. Biophysical Journal, 2002, 82, 310-320.	0.5	145
10	Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophysical Journal, 1997, 72, 146-162.	0.5	138
11	Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Letters, 1994, 352, 369-374.	2.8	134
12	EXCITATION–CONTRACTION COUPLING FROM THE 1950s INTO THE NEW MILLENNIUM. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 763-772.	1.9	122
13	The Cysteine-rich Secretory Protein Domain of Tpx-1 Is Related to Ion Channel Toxins and Regulates Ryanodine Receptor Ca2+ Signaling. Journal of Biological Chemistry, 2006, 281, 4156-4163.	3.4	118
14	Adverse Effects of Doxorubicin and Its Metabolic Product on Cardiac RyR2 and SERCA2A. Molecular Pharmacology, 2014, 86, 438-449.	2.3	106
15	Regulation of Ryanodine Receptors by Calsequestrin: Effect of High Luminal Ca2+ and Phosphorylation. Biophysical Journal, 2005, 88, 3444-3454.	0.5	100
16	The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres Journal of Physiology, 1978, 276, 67-82.	2.9	96
17	Excitationâ€contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles Journal of Physiology, 1985, 358, 75-89.	2.9	92
18	Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophysical Journal, 1997, 73, 1913-1924.	0.5	92

#	Article	IF	CITATIONS
19	Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. Journal of Membrane Biology, 1979, 45, 293-310.	2.1	87
20	Nitric Oxide Activates or Inhibits Skeletal Muscle Ryanodine Receptors Depending on Its Concentration, Membrane Potential and Ligand Binding. Journal of Membrane Biology, 2000, 173, 227.	2.1	85
21	Asymmetrical charge movement in slow―and fastâ€ŧwitch mammalian muscle fibres in normal and paraplegic rats Journal of Physiology, 1983, 341, 213-231.	2.9	84
22	An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Human Molecular Genetics, 2012, 21, 4497-4507.	2.9	84
23	Activation and Inhibition of Skeletal RyR Channels by a Part of the Skeletal DHPR II-III Loop: Effects of DHPR Ser 687 and FKBP12. Biophysical Journal, 1999, 77, 189-203.	0.5	82
24	Skeletal muscle excitation–contraction coupling: Who are the dancing partners?. International Journal of Biochemistry and Cell Biology, 2014, 48, 28-38.	2.8	78
25	Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle Journal of Physiology, 1988, 399, 63-80.	2.9	77
26	CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. International Journal of Biochemistry and Cell Biology, 2004, 36, 1599-1612.	2.8	74
27	Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. Progress in Biophysics and Molecular Biology, 2002, 79, 45-75.	2.9	73
28	The effects of βâ€adrenoceptor activation on contraction in isolated fast―and slowâ€ŧwitch skeletal muscle fibres of the rat. British Journal of Pharmacology, 1993, 110, 1133-1141.	5.4	72
29	Triadin Binding to the C-Terminal Luminal Loop of the Ryanodine Receptor is Important for Skeletal Muscle Excitation–Contraction Coupling. Journal of General Physiology, 2007, 130, 365-378.	1.9	70
30	Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophysical Journal, 1996, 70, 202-221.	0.5	64
31	Structure of the Janus Protein Human CLIC2. Journal of Molecular Biology, 2007, 374, 719-731.	4.2	64
32	High-frequency fatigue in rat skeletal muscle: Role of extracellular ion concentrations. Muscle and Nerve, 1995, 18, 890-898.	2.2	62
33	The voltage-activation of contraction in skeletal muscle. Progress in Biophysics and Molecular Biology, 1992, 57, 181-223.	2.9	61
34	Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles Journal of General Physiology, 1988, 91, 737-757.	1.9	58
35	?-Adrenergic potentiation of E-C coupling increases force in rat skeletal muscle. Muscle and Nerve, 1993, 16, 1317-1325.	2.2	58
36	A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochemical Journal, 2005, 390, 333-343.	3.7	56

#	Article	IF	CITATIONS
37	Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium, 2009, 45, 474-484.	2.4	56
38	Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 1984, 5, 333-347.	2.0	54
39	Differential effects of glycerol treatment on membrane capacity and excitation-contraction coupling in toad sartorius fibres. With an Appendix. Journal of Physiology, 1973, 234, 373-408.	2.9	53
40	Activation of the Cardiac Ryanodine Receptor by Sulfhydryl Oxidation is Modified by Mg 2+ and ATP. Journal of Membrane Biology, 1998, 163, 9-18.	2.1	53
41	Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium, 2009, 45, 264-274.	2.4	52
42	The Conformation of Calsequestrin Determines Its Ability to Regulate Skeletal Ryanodine Receptors. Biophysical Journal, 2006, 91, 1288-1301.	0.5	51
43	How Many Cysteine Residues Regulate Ryanodine Receptor Channel Activity?. Antioxidants and Redox Signaling, 2000, 2, 27-34.	5.4	50
44	Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. International Journal of Biochemistry and Cell Biology, 2009, 41, 2214-2224.	2.8	48
45	Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. British Journal of Pharmacology, 2018, 175, 1260-1278.	5.4	48
46	Neutralizing the pathological effects of extracellular histones with small polyanions. Nature Communications, 2020, 11, 6408.	12.8	48
47	Characteristics of Irreversible ATP Activation Suggest that Native Skeletal Ryanodine Receptors Can Be Phosphorylated via an Endogenous CaMKII. Biophysical Journal, 2001, 81, 3240-3252.	0.5	47
48	A dihydropyridine receptor α1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. International Journal of Biochemistry and Cell Biology, 2009, 41, 677-686.	2.8	47
49	A Structural Requirement for Activation of Skeletal Ryanodine Receptors by Peptides of the Dihydropyridine Receptor II-III Loop. Journal of Biological Chemistry, 2000, 275, 11631-11637.	3.4	46
50	Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. European Biophysics Journal, 2009, 39, 27-36.	2.2	45
51	Potassium contractures and mechanical activation in mammalian skeletal muscles. Journal of Membrane Biology, 1980, 57, 223-233.	2.1	42
52	Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies. Journal of Membrane Biology, 1987, 99, 79-92.	2.1	42
53	The random-coil â€~C' fragment of the dihydropyridine receptor II-III loop can activate or inhibit native skeletal ryanodine receptors. Biochemical Journal, 2003, 372, 305-316.	3.7	42
54	What we don't know about the structure of ryanodine receptor calcium release channels. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 713-723.	1.9	41

ANGELA F DULHUNTY

#	Article	IF	CITATIONS
55	Homer and the ryanodine receptor. European Biophysics Journal, 2009, 39, 91-102.	2.2	38
56	The membrane capacity of mammalian skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 1984, 5, 315-332.	2.0	37
57	Porin-type1 proteins in sarcoplasmic reticulum and plasmalemma of striated muscle fibres. Journal of Muscle Research and Cell Motility, 1995, 16, 595-610.	2.0	37
58	ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation. PLoS ONE, 2013, 8, e58334.	2.5	37
59	Cardiac Ryanodine Receptor Activity is Altered by Oxidizing Reagents in Either the Luminal or Cytoplasmic Solution. Journal of Membrane Biology, 1999, 167, 205-214.	2.1	36
60	The β1a Subunit of the Skeletal DHPR Binds to Skeletal RyR1 and Activates the Channel via Its 35-Residue C-Terminal Tail. Biophysical Journal, 2011, 100, 922-930.	0.5	36
61	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
62	Electrical properties of toad sartorius muscle fibres in summer and winter. Journal of Physiology, 1973, 230, 619-641.	2.9	34
63	The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat. Journal of Muscle Research and Cell Motility, 1982, 3, 169-190.	2.0	34
64	Differential effects of thyroid hormone on T-tubules and terminal cisternae in rat muscles: An electrophysiological and morphometric analysis. Journal of Muscle Research and Cell Motility, 1986, 7, 225-236.	2.0	34
65	Multiple Actions of Imperatoxin A on Ryanodine Receptors. Journal of Biological Chemistry, 2004, 279, 11853-11862.	3.4	34
66	Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin. Cell Calcium, 2008, 44, 363-373.	2.4	34
67	Ryanodine receptors from rabbit skeletal muscle are reversibly activated by rapamycin. Neuroscience Letters, 1997, 225, 81-84.	2.1	33
68	Redox Potential and the Response of Cardiac Ryanodine Receptors to CLIC-2, a Member of the Glutathione S-Transferase Structural Family. Antioxidants and Redox Signaling, 2008, 10, 1675-1686.	5.4	32
69	The Ryanodine Receptor: A Pivotal Ca2+ Regulatory Protein and Potential Therapeutic Drug Target. Current Drug Targets, 2011, 12, 709-723.	2.1	32
70	Fiber types in red and white segments of rat sternomastoid muscle. American Journal of Anatomy, 1979, 156, 51-61.	1.0	31
71	Oxidation and Reduction of Pig Skeletal Muscle Ryanodine Receptors. Biophysical Journal, 1999, 77, 3010-3022.	0.5	31
72	Ion channels in the sarcoplasmic reticulum of striated muscle. Acta Physiologica Scandinavica, 1996, 156, 375-385.	2.2	30

5

#	Article	IF	CITATIONS
73	Structural Determinants for Activation or Inhibition of Ryanodine Receptors by Basic Residues in the Dihydropyridine Receptor II-III Loop. Biophysical Journal, 2001, 80, 2715-2726.	0.5	30
74	Phosphate ion channels in sarcoplasmic reticulum of rabbit skeletal muscle. Journal of Physiology, 2001, 535, 715-728.	2.9	30
75	Ryanodine receptor modification and regulation by intracellular Ca2+ and Mg2+ in healthy and failing human hearts. Journal of Molecular and Cellular Cardiology, 2017, 104, 53-62.	1.9	30
76	Dynamic regulation of ryanodine receptor type 1 (RyR1) channel activity by Homer 1. Cell Calcium, 2008, 43, 307-314.	2.4	29
77	Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metabolism Reviews, 2011, 43, 236-252.	3.6	29
78	Excitation-contraction coupling and contractile properties in denervated rat EDL and soleus muscles. Journal of Muscle Research and Cell Motility, 1985, 6, 207-225.	2.0	28
79	The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment. Biochemical Journal, 2003, 370, 517-527.	3.7	28
80	CONTROL OF MUSCLE RYANODINE RECEPTOR CALCIUM RELEASE CHANNELS BY PROTEINS IN THE SARCOPLASMIC RETICULUM LUMEN. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 340-345.	1.9	28
81	Glycerol treatment in mammalian skeletal muscle. Journal of Membrane Biology, 1980, 53, 223-233.	2.1	27
82	The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths Journal of Physiology, 1977, 266, 687-711.	2.9	26
83	Effect of chloride withdrawal on the geometry of the T-tubules in amphibian and mammalian muscle. Journal of Membrane Biology, 1982, 67, 81-90.	2.1	26
84	Effects of ivermectin and midecamycin on ryanodine receptors and the Ca2+-ATPase in sarcoplasmic reticulum of rabbit and rat skeletal muscle. Journal of Physiology, 1999, 514, 313-326.	2.9	26
85	The voltage-gated calcium-channel β subunit: more than just an accessory. European Biophysics Journal, 2009, 39, 75-81.	2.2	26
86	Ryanodine receptor Ca2+ release channel post-translational modification: Central player in cardiac and skeletal muscle disease. International Journal of Biochemistry and Cell Biology, 2018, 101, 49-53.	2.8	26
87	A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochemical Journal, 2007, 401, 317-324.	3.7	25
88	The Mu class glutathione transferase is abundant in striated muscle and is an isoform-specific regulator of ryanodine receptor calcium channels. Cell Calcium, 2007, 41, 429-440.	2.4	25
89	Activation and inactivation of excitationâ€contraction coupling in rat soleus muscle Journal of Physiology, 1991, 439, 605-626.	2.9	24
90	Immunogold labeling of calcium ATPase in sarcoplasmic reticulum of skeletal muscle: use of 1-nm, 5-nm, and 10-nm gold Journal of Histochemistry and Cytochemistry, 1993, 41, 1459-1466.	2.5	24

#	Article	IF	CITATIONS
91	Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies. Journal of Muscle Research and Cell Motility, 2006, 27, 351-365.	2.0	24
92	C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition. Skeletal Muscle, 2015, 5, 6.	4.2	24
93	Selective effects of an octopus toxin on action potentials. Journal of Physiology, 1971, 218, 433-445.	2.9	23
94	Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. European Biophysics Journal, 2009, 39, 51-59.	2.2	23
95	Core skeletal muscle ryanodine receptor calcium release complex. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 3-12.	1.9	23
96	The rate of tetanic relaxation is correlated with the density of calcium ATPase in the terminal cisternae of thyrotoxic skeletal muscle. Pflugers Archiv European Journal of Physiology, 1990, 415, 433-439.	2.8	22
97	Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibers. Journal of Ultrastructure Research, 1983, 84, 34-49.	1.1	21
98	Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: Their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation-contraction coupling. Journal of Membrane Biology, 1989, 109, 73-83.	2.1	21
99	Malignant hyperthermia mutation sites in the Leu2442–Pro2477 (DP4) region of RyR1 (ryanodine) Tj ETQq1 1 (401, 333-339.	0.784314 3.7	rgBT /Overlo 21
100	Multiple Actions of the Anthracycline Daunorubicin on Cardiac Ryanodine Receptors. Molecular Pharmacology, 2011, 80, 538-549.	2.3	21
101	Proteins within the intracellular calcium store determine cardiac <scp>R</scp> y <scp>R</scp> channel activity and cardiac output. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 477-484.	1.9	21
102	Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. Journal of Cell Science, 2019, 132, .	2.0	21
103	Agonists and antagonists of the cardiac ryanodine receptor: Potential therapeutic agents?. , 2007, 113, 247-263.		20
104	Differences in the regulation of RyR2 from human, sheep, and rat by Ca2+ and Mg2+ in the cytoplasm and in the lumen of the sarcoplasmic reticulum. Journal of General Physiology, 2014, 144, 263-271.	1.9	20
105	Inositol Polyphosphates Modify the Kinetics of a Small Chloride Channel in Skeletal Muscle Sarcoplasmic Reticulum. Journal of Membrane Biology, 1997, 157, 147-158.	2.1	19
106	Dissection of the inhibition of cardiac ryanodine receptors by human glutathione transferase GSTM2-2. Biochemical Pharmacology, 2009, 77, 1181-1193.	4.4	18
107	An αâ€helical Câ€ŧerminal tail segment of the skeletal Lâ€ŧype Ca 2+ channel β 1a subunit activates ryanodine receptor type 1 via a hydrophobic surface. FASEB Journal, 2012, 26, 5049-5059.	0.5	18
108	Effects of cobalt, magnesium, and cadmium on contraction of rat soleus muscle. Biophysical Journal, 1989, 56, 1-14.	0.5	17

7

#	Article	IF	CITATIONS
109	The recombinant dihydropyridine receptor II–III loop and partly structured â€~C' region peptides modify cardiac ryanodine receptor activity. Biochemical Journal, 2005, 385, 803-813.	3.7	17
110	A novel cytoplasmic interaction between junctin and ryanodine receptor calcium release channels. Journal of Cell Science, 2015, 128, 951-63.	2.0	17
111	Effects of membrane potential on mechanical activation in skeletal muscle Journal of General Physiology, 1982, 79, 233-251.	1.9	16
112	Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release. Biochemical Journal, 2004, 379, 161-172.	3.7	16
113	Regulation of skeletal ryanodine receptors by dihydropyridine receptor II–III loop C-region peptides: relief of Mg2+ inhibition. Biochemical Journal, 2005, 387, 429-436.	3.7	16
114	Junctin – the quiet achiever. Journal of Physiology, 2009, 587, 3135-3137.	2.9	16
115	A Skeletal Muscle Ryanodine Receptor Interaction Domain in Triadin. PLoS ONE, 2012, 7, e43817.	2.5	16
116	Indentations in the terminal cisternae of denervated rat EDL and soleus muscle fibers. Journal of Ultrastructure Research, 1984, 88, 30-43.	1.1	15
117	Internal citrate ions reduce the membrane potential for contraction threshold in mammalian skeletal muscle fibers. Biophysical Journal, 1988, 53, 609-616.	0.5	15
118	STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF INTERACTIONS BETWEEN THE DIHYDROPYRIDINE RECEPTOR II?III LOOP AND THE RYANODINE RECEPTOR. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1114-1117.	1.9	15
119	MOLECULAR RECOGNITION OF THE DISORDERED DIHYDROPYRIDINE RECEPTOR II–III LOOP BY A CONSERVED SPRY DOMAIN OF THE TYPE 1 RYANODINE RECEPTOR. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 346-349.	1.9	15
120	K-contractures and membrane potential in mammalian skeletal muscle. Nature, 1977, 266, 75-78.	27.8	14
121	Arg615Cys Substitution in Pig Skeletal Ryanodine Receptors Increases Activation of Single Channels by a Segment of the Skeletal DHPR II-III Loop. Biophysical Journal, 2001, 80, 1769-1782.	0.5	14
122	In vitro modulation of the cardiac ryanodine receptor activity by Homer1. Pflugers Archiv European Journal of Physiology, 2009, 458, 723-732.	2.8	14
123	3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM. PLoS ONE, 2011, 6, e25813.	2.5	14
124	Recent advances in understanding the ryanodine receptor calcium release channels and their role in calcium signalling. F1000Research, 2018, 7, 1851.	1.6	14
125	Actions of perchlorate ions on rat soleus muscle fibres Journal of Physiology, 1992, 448, 99-119.	2.9	13
126	Functional implications of modifying RyR-activating peptides for membrane permeability. British Journal of Pharmacology, 2005, 144, 743-754.	5.4	13

ANGELA F DULHUNTY

#	Article	IF	CITATIONS
127	Effects of an α-helical ryanodine receptor C-terminal tail peptide on ryanodine receptor activity: Modulation by Homer. International Journal of Biochemistry and Cell Biology, 2006, 38, 1700-1715.	2.8	13
128	The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Biochemical Pharmacology, 2010, 80, 381-388.	4.4	13
129	The elusive role of the SPRY2 domain in RyR1. Channels, 2011, 5, 148-160.	2.8	13
130	Regulation and dysregulation of cardiac ryanodine receptor (RyR2) open probability during diastole in health and disease. Journal of General Physiology, 2012, 140, 87-92.	1.9	13
131	Cardiac ryanodine receptor activation by high Ca2+ store load is reversed in a reducing cytoplasmic redox environment. Journal of Cell Science, 2014, 127, 4531-41.	2.0	13
132	β1a490–508, a 19-Residue Peptide from C-Terminal Tail of Cav1.1 β1a Subunit, Potentiates Voltage-Dependen Calcium Release in Adult Skeletal Muscle Fibers. Biophysical Journal, 2014, 106, 535-547.	t 0.5	13
133	Slow potassium contractures in mouse limb muscles Journal of Physiology, 1981, 314, 91-105.	2.9	12
134	Indentations in the terminal cisternae of slow- and fast-twitch muscle fibers from normal and paraplegic rats. Journal of Ultrastructure Research, 1983, 84, 50-59.	1.1	12
135	Cyclization of the Intrinsically Disordered α1S Dihydropyridine Receptor II-III Loop Enhances Secondary Structure and in Vitro Function. Journal of Biological Chemistry, 2011, 286, 22589-22599.	3.4	12
136	FKBP association with RyR channels: effect of CLIC2 binding on sub-conductance opening and FKBP binding. Journal of Cell Science, 2017, 130, 3588-3600.	2.0	12
137	Activation of RyR2 by class I kinase inhibitors. British Journal of Pharmacology, 2019, 176, 773-786.	5.4	12
138	Upper motor neurone modulation of charge movement and mechanical activation in rat skeletal muscle fibres. Neuroscience Letters, 1981, 27, 271-276.	2.1	11
139	Muscle-specific GSTM2-2 on the luminal side of the sarcoplasmic reticulum modifies RyR ion channel activity. International Journal of Biochemistry and Cell Biology, 2008, 40, 1616-1628.	2.8	11
140	How does flecainide impact RyR2 channel function?. Journal of General Physiology, 2022, 154, .	1.9	11
141	Noninactivating tension in rat skeletal muscle. Effects of thyroid hormone Journal of General Physiology, 1989, 94, 183-203.	1.9	10
142	Ultrastructure of sarcoballs on the surface of skinned amphibian skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 1992, 13, 640-653.	2.0	10
143	Caffeine sensitivity of native RyR channels from normal and malignant hyperthermic pigs: effects of a DHPR II–III loop peptide. American Journal of Physiology - Cell Physiology, 2004, 286, C821-C830.	4.6	10
144	The inhibitory glutathione transferase M2-2 binding site is located in divergent region 3 of the cardiac ryanodine receptor. Biochemical Pharmacology, 2012, 83, 1523-1529.	4.4	10

#	Article	IF	CITATIONS
145	Flecainide Paradoxically Activates Cardiac Ryanodine Receptor Channels under Low Activity Conditions: A Potential Pro-Arrhythmic Action. Cells, 2021, 10, 2101.	4.1	10
146	A freeze-fracture study of normal and dystrophic C57BL mouse muscle. Muscle and Nerve, 1982, 5, 425-433.	2.2	9
147	Diazepam reveals different rate-limiting processes in rat skeletal muscle contraction. Canadian Journal of Physiology and Pharmacology, 1987, 65, 272-273.	1.4	9
148	Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres. Neuroscience Letters, 1981, 27, 277-283.	2.1	8
149	Potassium contractures and asymmetric charge movement in extensor digitorum longus and soleus muscles from thyrotoxic rats. Journal of Muscle Research and Cell Motility, 1987, 8, 289-296.	2.0	8
150	Effects of external cadmium ions on excitation-contraction coupling in rat soleus fibres. Pflugers Archiv European Journal of Physiology, 1999, 437, 197-203.	2.8	8
151	Role of some unconserved residues in the "C" region of the skeletal DHPR II-III loop. Frontiers in Bioscience - Landmark, 2005, 10, 1368.	3.0	8
152	Glutathione transferase M2 variants inhibit ryanodine receptor function in adult mouse cardiomyocytes. Biochemical Pharmacology, 2015, 97, 269-280.	4.4	8
153	Effects of Toxin from the Blue-Ringed Octopus (Hapalochlaena maculosa). , 1973, , 85-106.		8
154	Slow potential changes in mammalian muscle fibers during prolonged hyperpolarization: Transport number effects and chloride depletion. Journal of Membrane Biology, 1984, 78, 235-248.	2.1	7
155	Activating the ryanodine receptor with dihydropyridine receptor II-III loop segments: size and charge do matter. Frontiers in Bioscience - Landmark, 2004, 9, 2860.	3.0	7
156	Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Pflugers Archiv European Journal of Physiology, 2016, 468, 1985-1994.	2.8	7
157	Structural and biophysical analyses of the skeletal dihydropyridine receptor β subunit β1a reveal critical roles of domain interactions for stability. Journal of Biological Chemistry, 2017, 292, 8401-8411.	3.4	7
158	The Anthracycline Metabolite Doxorubicinol Abolishes RyR2 Sensitivity to Physiological Changes in Luminal Ca ²⁺ through an Interaction with Calsequestrin. Molecular Pharmacology, 2017, 92, 576-587.	2.3	7
159	Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. Advances in Pharmacology, 2017, 79, 287-324.	2.0	7
160	Functional and structural characterization of a novel malignant hyperthermia-susceptible variant of DHPR-β1a subunit (CACNB1). American Journal of Physiology - Cell Physiology, 2018, 314, C323-C333.	4.6	7
161	Exploiting Peptidomimetics to Synthesize Compounds That Activate Ryanodine Receptor Calcium Release Channels. ChemMedChem, 2018, 13, 1957-1971.	3.2	7
162	The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes. PLoS ONE, 2016, 11, e0162415.	2.5	7

#	Article	IF	CITATIONS
163	Subcellular distribution of ryanodine receptor-like and calcium ATPase-like immunoreactivity in brainstem and cerebellar neurones of rat and guinea pig. Neuroscience Letters, 1994, 166, 143-148.	2.1	6
164	Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skeletal Muscle, 2015, 5, 23.	4.2	6
165	Molecular Changes in the Cardiac RyR2 With Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Frontiers in Physiology, 2022, 13, 830367.	2.8	6
166	A refractory period after brief activation of mammalian skeletal muscle fibres. Neuroscience Letters, 1979, 14, 223-228.	2.1	5
167	A freeze-fracture study of extensor digitorum longus and soleus muscle fibers from thyrotoxic rats. Journal of Structural Biology, 1986, 94, 121-130.	0.8	5
168	Differential effects of diazepam on rat hindlimb muscles. Canadian Journal of Physiology and Pharmacology, 1987, 65, 1856-1863.	1.4	4
169	Letter to the Editor: 1H, 13C and 15N assignments for the II–III loop region of the skeletal dyhydropyridine receptor. Journal of Biomolecular NMR, 2005, 32, 89-90.	2.8	4
170	Do independent processes control the activation and inactivation of potassium contracture tension in rat skeletal muscle?. Journal of Membrane Biology, 1993, 135, 245-52.	2.1	3
171	Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition. Pflugers Archiv European Journal of Physiology, 2016, 468, 269-278.	2.8	3
172	Gating of RYR2 channels from the arrhythmic RYR2-P2328S mouse heart and some unexpected actions of flecainide. Journal of General Physiology, 2022, 154, .	1.9	3
173	The effect of diazepam on potassium contractures, contraction threshold, and resting tension in rat skeletal muscles. Canadian Journal of Physiology and Pharmacology, 1988, 66, 573-579.	1.4	2
174	Effects of membrane potential on just detectable movement in rat skeletal muscle: Effects of denervation. Journal of Membrane Biology, 1994, 138, 197-207.	2.1	2
175	Interactions between Dihydropyridine β1A Subunit and Ryanodine Receptor Isoforms. Biophysical Journal, 2013, 104, 105a.	0.5	2
176	Molecular interactions of <scp>STAC</scp> proteins with skeletal muscle dihydropyridine receptor and excitationâ€contraction coupling. Protein Science, 2022, 31, e4311.	7.6	2
177	Mechanical activation in dystrophic C57BL mouse muscle. Neuroscience Letters, 1980, 17, 289-293.	2.1	1
178	Calcium ATPase in the sarcoplasmic reticulum of muscle from normal and malignant hyperthermia susceptible pigs. Neuroscience Letters, 1991, 131, 187-192.	2.1	1
179	Cadmium withdrawal contractures in rat soleus muscle fibres. Pflugers Archiv European Journal of Physiology, 2000, 440, 68-74.	2.8	1
180	Delayed contractures induced by external cadmium ions in rat soleus muscle fibres. Pflugers Archiv European Journal of Physiology, 2000, 439, 263-270.	2.8	1

#	Article	IF	CITATIONS
181	Peptide mimetic compounds can activate or inhibit cardiac and skeletal ryanodine receptors. Life Sciences, 2020, 260, 118234.	4.3	1
182	Triadin Binding to the C-Terminal Luminal Loop of the Ryanodine Receptor is Important for Skeletal Muscle Excitation–Contraction Coupling. Journal of Cell Biology, 2007, 179, i2-i2.	5.2	1
183	Depolarization accelerates the decay of K+ contractures in rat skeletal muscle fibers. , 1996, 19, 1025-1036.		0
184	A Ca2+-activated anion channel in the sarcoplasmic reticulum of skeletal muscle. Current Topics in Membranes, 2002, , 59-80.	0.9	0
185	Cadmium withdrawal contractures in rat soleus muscle fibres. Pflugers Archiv European Journal of Physiology, 2000, 440, 68.	2.8	0
186	ASYMMETRICAL CHARGE MOVEMENT IN NORMAL AND CLYCEROL-TREATED TOAD SARTORIUS FIBRES. , 1981, , 321-327.		0