
Kyo Yamasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151399/publications.pdf Version: 2024-02-01

KVO YAMASU

#	Article	lF	CITATIONS
1	A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Developmental Biology, 2021, 472, 1-17.	2.0	1
2	Involvement of Oct4â€ŧype transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos. Development Growth and Differentiation, 2021, 63, 306-322.	1.5	2
3	Involvement of an Oct4-related PouV gene, pou5f3/pou2, in neurogenesis in the early neural plate of zebrafish embryos. Developmental Biology, 2020, 457, 30-42.	2.0	6
4	Role of somite patterning in the formation of Weberian apparatus and pleural rib in zebrafish. Journal of Anatomy, 2020, 236, 622-629.	1.5	4
5	Transcriptional autoregulation of zebrafish <i>tbx6</i> is required for somite segmentation. Development (Cambridge), 2019, 146, .	2.5	9
6	4D imaging identifies dynamic migration and the fate of gbx2-expressing cells in the brain primordium of zebrafish. Neuroscience Letters, 2019, 690, 112-119.	2.1	1
7	Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators. Scientific Reports, 2018, 8, 6048.	3.3	24
8	In vitro analysis of the transcriptional regulatory mechanism of zebrafish pou5f3. Experimental Cell Research, 2018, 364, 28-41.	2.6	5
9	Early development of the enteric nervous system visualized by using a new transgenic zebrafish line harboring a regulatory region for choline acetyltransferase a (chata) gene. Gene Expression Patterns, 2018, 28, 12-21.	0.8	9
10	The role of gastrulation brain homeobox 2 (gbx2) in the development of the ventral telencephalon in zebrafish embryos. Differentiation, 2018, 99, 28-40.	1.9	7
11	Optical measurement of neuronal activity in the developing cerebellum of zebrafish using voltage-sensitive dye imaging. NeuroReport, 2018, 29, 1349-1354.	1.2	11
12	Deadenylation by the <scp>CCR</scp> 4â€ <scp>NOT</scp> complex contributes to the turnover of <i>hairy</i> â€related <scp>mRNA</scp> s in the zebrafish segmentation clock. FEBS Letters, 2018, 592, 3388-3398.	2.8	9
13	Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mechanisms of Development, 2018, 152, 21-31.	1.7	8
14	Comprehensive analysis of target genes in zebrafish embryos reveals gbx2 involvement in neurogenesis. Developmental Biology, 2017, 430, 237-248.	2.0	15
15	Enhancer activity-based identification of functional enhancers using zebrafish embryos. Genomics, 2016, 108, 102-107.	2.9	5
16	Posterior–anterior gradient of zebrafish hes6 expression in the presomitic mesoderm is established by the combinatorial functions of the downstream enhancer and 3′UTR. Developmental Biology, 2016, 409, 543-554.	2.0	6
17	Gbx2 functions as a transcriptional repressor to regulate the specification and morphogenesis of the mid–hindbrain junction in a dosage- and stage-dependent manner. Mechanisms of Development, 2013, 130, 532-552.	1.7	19
18	Binding Properties of Thyroxine to Nuclear Extract from Sea Urchin Larvae. Zoological Science, 2012, 29, 79-82.	0.7	9

Kyo Yamasu

#	Article	IF	CITATIONS
19	Mesendoderm specification depends on the function of <scp>P</scp> ou2, the class V <scp>POU</scp> â€ŧype transcription factor, during zebrafish embryogenesis. Development Growth and Differentiation, 2012, 54, 686-701.	1.5	15
20	Pou2, a class V POU-type transcription factor in zebrafish, regulates dorsoventral patterning and convergent extension movement at different blastula stages. Mechanisms of Development, 2012, 129, 219-235.	1.7	18
21	Retinoic acid-dependent establishment of positional information in the hindbrain was conserved during vertebrate evolution. Developmental Biology, 2011, 350, 154-168.	2.0	6
22	FGF receptor gene expression and its regulation by FGF signaling during early zebrafish development. Genesis, 2010, 48, 707-716.	1.6	27
23	FGF receptor gene expression and its regulation by FGF signaling during early zebrafish development. Genesis, 2010, 48, spcone-spcone.	1.6	0
24	The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors. Mechanisms of Development, 2009, 126, 1-17.	1.7	34
25	Autoregulatory loop and retinoic acid repression regulate <i>pou2/pou5f1</i> gene expression in the zebrafish embryonic brain. Developmental Dynamics, 2008, 237, 1373-1388.	1.8	26
26	Transcription of fgf8 is regulated by activating and repressive cis-elements at the midbrain–hindbrain boundary in zebrafish embryos. Developmental Biology, 2008, 316, 471-486.	2.0	19
27	Initial specification of the epibranchial placode in zebrafish embryos depends on the fibroblast growth factor signal. Developmental Dynamics, 2007, 236, 564-571.	1.8	50
28	Three enhancer regions regulate gbx2 gene expression in the isthmic region during zebrafish development. Mechanisms of Development, 2006, 123, 907-924.	1.7	17
29	Genomic organization, alternative splicing, and multiple regulatory regions of the zebrafish fgf8 gene. Development Growth and Differentiation, 2006, 48, 447-462.	1.5	27
30	Structure of the zebrafish fasciclin I-related extracellular matrix protein (βig-h3) and its characteristic expression during embryogenesis. Gene Expression Patterns, 2003, 3, 331-336.	0.8	11
31	gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Developmental Dynamics, 2003, 228, 433-450.	1.8	52
32	Function of a sea urchin egg Src family kinasein initiating Ca2+ release at fertilization. Developmental Biology, 2003, 256, 367-378.	2.0	47
33	Characterization of the upstream region that regulates the transcription of the gene for the precursor to EGF-related peptides, exogastrula-inducing peptides, of the sea urchin Anthocidaris crassispina. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 136, 15-26.	1.6	2
34	Expression of the FGF receptor 2 gene (fgfr2) during embryogenesis in the zebrafish Danio rerio. Mechanisms of Development, 2002, 119, S173-S178.	1.7	33
35	Genomic organization of the gene that encodes the precursor to EGF-related peptides, exogastrula-inducing peptides, of the sea urchin Anthocidaris crassispina. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 311-320.	2.4	4
36	Role of syndecan in the elongation of postoral arms in sea urchin larvae. Development Growth and Differentiation, 2002, 44, 45-53.	1.5	3

Kyo Yamasu

#	Article	lF	CITATIONS
37	Identification of ephrin-A3 and novel genes specific to the midbrain-MHB in embryonic zebrafish by ordered differential display. Mechanisms of Development, 2001, 107, 83-96.	1.7	21
38	Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos. Development Growth and Differentiation, 2000, 42, 449-458.	1.5	4
39	Expression of a src-type protein tyrosine kinase gene, AcSrc1, in the sea urchin embryo. Development Growth and Differentiation, 1999, 41, 19-28.	1.5	18
40	Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos. Development Growth and Differentiation, 1999, 41, 81-91.	1.5	16
41	Association of the sea urchin EGF-related peptide, EGIP-D, with fasciclin I-related ECM proteins from the sea urchin Anthocidaris crassispina. Development Growth and Differentiation, 1999, 41, 483-494.	1.5	12
42	Expression of the Gene for Translation Elongation Factor 1α-Related Protein during Development of the Sea Urchin Anthocidaris crassispina. Zoological Science, 1999, 16, 785-792.	0.7	2
43	Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones. Development Growth and Differentiation, 1998, 40, 307-312.	1.5	41
44	Purification of EGIP-D-Binding Protein from the Embryos of the Sea Urchin Anthocidaris crassispina. Zoological Science, 1997, 14, 931-934.	0.7	4
45	The Protein Tyrosine Kinases of the Sea Urchin Anthocidaris crassispina. Zoological Science, 1997, 14, 941-946.	0.7	20
46	Molecular Cloning of a cDNA that Encodes the Precursor to Several Exogastrula-inducing Peptides, Epidermal-growth-factor-related Polypeptides of the Sea Urchin Anthocidaris crassispina. FEBS Journal, 1995, 228, 515-523.	0.2	4
47	Molecular Cloning of a cDNA that Encodes the Precursor to Several Exogastrula-inducing Peptides, Epidermal-growth-factor-related Polypeptides of the Sea Urchin Anthocidaris crassispina. FEBS Journal, 1995, 228, 515-523.	0.2	16
48	A Protein That Binds an Exogastrula-Inducing Peptide, EGIP-D, in the Hyaline Layer of Sea Urchin Embryos. (exogastrula-inducing peptide (EGIP)/binding protein/hyaline layer/sea) Tj ETQq0 0 0 rgBT /Overlock 10) Tf1550 297	7 T d (urchin/e
49	Formation of the Adult Rudiment of Sea Urchins Is Influenced by Thyroid Hormones. Developmental Biology, 1994, 161, 1-11.	2.0	80
50	Localization of an Exogastrula-Inducing Peptide (EGIP) in Embryos of the Sea Urchin Anthocidaris crassispina. (Exogastrula-inducing peptide (EGIP)/gastrulation/acidic vesicle/sea) Tj ETQq0 0 0 rgBT /Overlock 10	Тf БØ 217	7 T&(urchin/ex
51	Conservation of the Dimeric Unit of H2A and H2B Histones during the Replication Cycle. Experimental Cell Research, 1993, 207, 226-229.	2.6	1
52	Maternal Exogastrula-Inducing Peptides (EGIPs) and Their Changes during Development in the Sea Urchin Anthocidaris crassispina. Development Growth and Differentiation, 1992, 34, 661-668.	1.5	10
53	Conservative Segregation of Tetrameric Units of H3 and H4 Histones during Nuclesome Replication. Journal of Biochemistry, 1990, 107, 15-20.	1.7	37
54	Reassembly of Nucleosomal Histone Octamers during Replication of Chromatin1. Journal of Biochemistry, 1987, 101, 1041-1049.	1.7	6

#	Article	IF	CITATIONS
55	Fractionation of newly replicated nucleosomes by density labeling and rate zonal centrifugation for the analysis of the deposition sites of newly synthesized nucleosomal core histones. FEBS Journal, 1985, 150, 575-580.	0.2	13