Hai-Feng Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215135/publications.pdf

Version: 2024-02-01

172457	144013
29	57
h-index	g-index
0.F	4707
95	4727
times ranked	citing authors
	29 h-index 95

#	Article	IF	Citations
1	Cantilever-Based Optical Deflection Assay for Discrimination of DNA Single-Nucleotide Mismatches. Analytical Chemistry, 2001, 73, 1567-1571.	6.5	363
2	Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27, 215602.	2.6	276
3	A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 2020, 35, 101646.	3.0	220
4	Nerve Agents Detection Using a Cu $2+$ /l-Cysteine Bilayer-Coated Microcantilever. Journal of the American Chemical Society, 2003, 125, 1124-1125.	13.7	158
5	Microcantilever biosensors for chemicals and bioorganisms. Analyst, The, 2011, 136, 1539.	3.5	112
6	A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection. Chemical Communications, 2000, , 457-458.	4.1	109
7	Nonequilibrium Plasmaâ€Activated Antimicrobial Solutions are Broadâ€Spectrum and Retain their Efficacies for Extended Period of Time. Plasma Processes and Polymers, 2013, 10, 544-555.	3.0	107
8	Detection of Hg2+Using Microcantilever Sensors. Analytical Chemistry, 2002, 74, 3611-3615.	6.5	106
9	Detection of CrO42-Using a Hydrogel Swelling Microcantilever Sensor. Analytical Chemistry, 2003, 75, 4773-4777.	6.5	106
10	Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 2007, 22, 2636-2642.	10.1	94
11	Ultrasensitive Detection of CrO42-Using a Microcantilever Sensor. Analytical Chemistry, 2001, 73, 1572-1576.	6.5	92
12	Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnology and Bioengineering, 2006, 95, 333-341.	3.3	71
13	Solvent Effect on the Self-Assembled Structure of an Amphiphilic Perylene Diimide Derivative. Journal of Physical Chemistry B, 2008, 112, 7196-7202.	2.6	71
14	In situ detection of calcium ions with chemically modified microcantilevers. Biosensors and Bioelectronics, 2002, 17, 337-343.	10.1	67
15	Detection of Pb ²⁺ Using a Hydrogel Swelling Microcantilever Sensor. Analytical Sciences, 2004, 20, 9-11.	1.6	64
16	Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and TheirContribution to Bacterial Inactivation. Scientific Reports, 2016, 6, 20365.	3.3	62
17	Photoactivated Polymeric Bilayer Actuators Fabricated via 3D Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27308-27315.	8.0	58
18	Ultra‣ong Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films. Angewandte Chemie - International Edition, 2016, 55, 11829-11833.	13.8	56

#	Article	IF	Citations
19	Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method. Food Chemistry, 2014, 156, 184-189.	8.2	55
20	Glucose Oxidase Multilayer Modified Microcantilevers for Glucose Measurement. Analytical Chemistry, 2005, 77, 6197-6204.	6.5	54
21	Self-Assembly of Perylenediimide and Naphthalenediimide Nanostructures on Glass Substrates through Deposition from the Gas Phase. Journal of the American Chemical Society, 2008, 130, 10056-10057.	13.7	53
22	An Anti E. Coli O157:H7 Antibody-Immobilized Microcantilever for the Detection of Escherichia Coli (E.) Tj ETQq0	0 0 rgBT	Oyerlock 10 ⁻
23	Decomposition of <scp>I</scp> -Valine under Nonthermal Dielectric Barrier Discharge Plasma. Journal of Physical Chemistry B, 2014, 118, 1612-1620.	2.6	47
24	Microcantilever biosensors based on conformational change of proteins. Analyst, The, 2008, 133, 434.	3.5	46
25	Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. Journal of Colloid and Interface Science, 2012, 381, 11-16.	9.4	39
26	Quartz crystal microbalance based biosensor for rapid and sensitive detection of maize chlorotic mottle virus. Analytical Methods, 2014, 6, 4530-4536.	2.7	38
27	Detection of feline coronavirus using microcantilever sensors. Measurement Science and Technology, 2006, 17, 2964-2968.	2.6	37
28	Hexagonal Organic Nanopillar Array from the Melamineâ^'Cyanuric Acid Complex. Langmuir, 2010, 26, 4620-4622.	3.5	35
29	Approaches to Increasing Surface Stress for Improving Signal-to-Noise Ratio of Microcantilever Sensors. Analytical Chemistry, 2010, 82, 1634-1642.	6.5	34
30	Photon-driven nanomechanical cyclic motion. Chemical Communications, 2004, , 2532.	4.1	31
31	High Electron Mobility of Amorphous Red Phosphorus Thin Films. Angewandte Chemie - International Edition, 2019, 58, 6766-6771.	13.8	29
32	Bacterial Biofilm Growth on 3D-Printed Materials. Frontiers in Microbiology, 2021, 12, 646303.	3.5	29
33	Mechanical and electronic approaches to improve the sensitivity of microcantilever sensors. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 1-12.	3.4	26
34	Computational View toward the Inhibition of SARS-CoV-2 Spike Glycoprotein and the 3CL Protease. Computation, 2020, 8, 53.	2.0	26
35	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, The, 2012, 137, 1220.	3.5	25
36	Triphenylene Nano/Microwires for Sensing Nitroaromatics. Journal of Physical Chemistry C, 2011, 115, 20091-20096.	3.1	24

#	Article	IF	Citations
37	Applications of Highly Stretchable and Tough Hydrogels. Polymers, 2019, 11, 1773.	4.5	24
38	Design and Fabrication of Highly Stretchable and Tough Hydrogels. Polymer Reviews, 2020, 60, 420-441.	10.9	24
39	Microcantilever (MCL) Biosensing. Current Analytical Chemistry, 2006, 2, 297-307.	1.2	23
40	Moisture measurement using porous aluminum oxide coated microcantilevers. Sensors and Actuators B: Chemical, 2008, 134, 390-395.	7.8	23
41	New fluorescent probes for the detection of mixed sodium and potassium metal ions. Chemical Communications, 2001, , 2092-2093.	4.1	22
42	Fibrous Phosphorus Quantum Dots for Cell Imaging. ACS Applied Nano Materials, 2020, 3, 752-759.	5.0	22
43	Mechanism of Ampicillin Degradation by Non-Thermal Plasma Treatment with FE-DBD. Plasma, 2018, 1, 1-11.	1.8	21
44	1,6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury. Analyst, The, 2005, 130, 1577.	3.5	19
45	A calixarene based fluorescent Sr2+ and Ca2+ probe. Organic and Biomolecular Chemistry, 2006, 4, 770.	2.8	19
46	Microcantilevers Modified by Horseradish Peroxidase Intercalated Nano-Assembly for Hydrogen Peroxide Detection. Analytical Sciences, 2006, 22, 205-208.	1.6	18
47	Phenylethynyl and Phenol End-Capping Studies of Polybiphenyloxydiphenylsilanes for Cross-Linking and Enhanced Thermal Stability. Macromolecules, 2011, 44, 4107-4115.	4.8	17
48	Decomposition of sugars under non-thermal dielectric barrier discharge plasma. Clinical Plasma Medicine, 2014, 2, 56-63.	3.2	16
49	Highly Selective Sensing of Nitroaromatics Using Nanomaterials of Ellagic Acid. Journal of Physical Chemistry C, 2012, 116, 4442-4448.	3.1	15
50	Highly stretchable gelatinâ€polyacrylamide hydrogel for potential transdermal drug release. Nano Select, 2021, 2, 107-115.	3.7	15
51	Microcantilevers modified by specific peptide for selective detection of trimethylamine. Biosensors and Bioelectronics, 2011, 30, 140-144.	10.1	14
52	Metal organic framework (MOF) micro/nanopillars. CrystEngComm, 2014, 16, 2885-2888.	2.6	14
53	Photochromic dye-sensitized solar cells. AIMS Materials Science, 2015, 2, 503-509.	1.4	14
54	Novel Diacetylinic Aryloxysilane Polymers: A New Thermally Cross-Linkable High Temperature Polymer System. Macromolecules, 2013, 46, 4370-4377.	4.8	13

#	Article	IF	CITATIONS
55	Metal Organic Framework Micro/Nanopillars of Cu(BTC)·3H2O and Zn(ADC)·DMSO. Nanomaterials, 2015, 5, 565-576.	4.1	12
56	Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films. Angewandte Chemie, 2016, 128, 12008-12012.	2.0	12
57	Improved Surface Modification Approach for Micromechanical Biosensors. Langmuir, 2008, 24, 345-349.	3.5	9
58	A first principles study of interactions of CO2 with surfaces of a Cu(benzeneâ€1,3,5â€tricarboxylate) metal organic framework. Applied Surface Science, 2016, 385, 578-586.	6.1	9
59	The Development of a Pipeline for the Identification and Validation of Small-Molecule RelA Inhibitors for Use as Anti-Biofilm Drugs. Microorganisms, 2020, 8, 1310.	3.6	9
60	Injectable and moldable hydrogels for use in sensitive and wide range strain sensing applications. Biopolymers, 2020, 111 , e23355.	2.4	9
61	Experimental and Theoretical Aspects of Glucose Measurement Using a Microcantilever Modified by Enzyme-Containing Polyacrylamide. Diabetes Technology and Therapeutics, 2005, 7, 986-995.	4.4	8
62	Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer. Applied Biochemistry and Biotechnology, 2017, 183, 555-565.	2.9	8
63	Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 2981-2989.	2.8	8
64	Morphologies and optical properties of nanostructures self-assembled from asymmetrical, amphiphilic perylene derivatives. Journal of Materials Science, 2011, 46, 188-195.	3.7	7
65	Synthesis of a Re-usable Cellobiase Enzyme Catalyst through In situ Encapsulation in Nonsurfactant Templated Sol–Gel Mesoporous Silica. Topics in Catalysis, 2012, 55, 1247-1253.	2.8	6
66	Methane Incorporation Into Liquid Fuel by Nonequilibrium Plasma Discharges. IEEE Transactions on Plasma Science, 2017, 45, 683-690.	1.3	6
67	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods, 2017, 9, 3356-3360.	2.7	6
68	Biomolecule Response to Nonthermal Plasma. Plasma Medicine, 2017, 7, 427-443.	0.6	6
69	Polymerization of Solid-State 2,2′-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Applied Polymer Materials, 2020, 2, 1518-1527.	4.4	6
70	Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 Mpro. Molecular Diversity, 2022, 26, 1645-1661.	3.9	6
71	Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochemistry Communications, 2008, 10, 222-224.	4.7	5
72	Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films. Journal of Nanotechnology, 2009, 2009, 1-8.	3.4	4

#	Article	IF	CITATIONS
73	Self-Assembling Organic Micro-/Nano-Pillars on Gold and Glass Surfaces. Nanomaterials, 2014, 4, 768-777.	4.1	4
74	High Electron Mobility of Amorphous Red Phosphorus Thin Films. Angewandte Chemie, 2019, 131, 6838-6843.	2.0	4
75	A colorimetric method for comparison of oxidative strength of DBD plasma. Sensors and Actuators Reports, 2019, 1, 100001.	4.4	4
76	Improving Photocatalytic Performance Using Nanopillars and Micropillars. Materials, 2021, 14, 299.	2.9	4
77	Functional layer-by-layer multilayer films for ion recognition. Analytical Methods, 2013, 5, 3454.	2.7	3
78	Polymerization of D-Ribose in Dielectric Barrier Discharge Plasma. Plasma, 2018, 1, 144-149.	1.8	3
79	Stable Copper Phosphorus Iodide (Cu ₂ P ₃ I ₂) Nano/Microwire Photodetectors. ChemNanoMat, 2018, 4, 1083-1087.	2.8	3
80	Polymerization of Solid-State Aminophenol to Polyaniline Derivative Using a Dielectric Barrier Discharge Plasma. Plasma, 2020, 3, 187-195.	1.8	3
81	Environmental Monitoring Using Microcantilever Sensors. ACS Symposium Series, 2005, , 284-305.	0.5	2
82	Reply: High Proton Conductivity of Water Channels in a Highly Ordered Nanowire. Angewandte Chemie - International Edition, 2012, 51, 10457-10458.	13.8	2
83	Self-Assembled Microwires of Terephthalic Acid and Melamine. Crystals, 2017, 7, 236.	2.2	2
84	Introduction and Characterization of Phosphorus Nanomaterials. ACS Symposium Series, 2019, , 27-45.	0.5	2
85	Fabrication and applications of self-assembled nanopillars. AIMS Materials Science, 2017, 4, 905-919.	1.4	2
86	Stable Cu2P3I2 and Ag2P3I2 Single-Wire and Thin Film Devices for Humidity Sensing. Micro, 2022, 2, 183-190.	2.0	2
87	Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma, 2022, 5, 146-153.	1.8	1
88	Ultraviolet photoelectron spectroscopy of pristine poly (sodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (po (PTCDI) nanobelts. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	oly[2-(3-thi 0.1	ienyl)-ethoxy O
89	Crystalline Microwires of Rubrene for Chemical Sensing. Analytical Chemistry Letters, 2011, 1, 158-163.	1.0	О
90	Single Mesowire Transistor From Perylene Tetracarboxylic Diimide. IEEE Nanotechnology Magazine, 2012, 11, 448-450.	2.0	0

Hai-Feng Ji

#	Article	IF	CITATIONS
91	Reply: High Proton Conductivity of Water Channels in a Highly Ordered Nanowire. Angewandte Chemie, 2012, 124, 10607-10608.	2.0	o
92	Synthesis of A Silver Nanowire Array on Cu-BTC MOF Micropillars. Sci, 2019, 1, 4.	3.0	0