
Antti Hassinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150954/publications.pdf Version: 2024-02-01

ANTTI HASSINEN

#	Article	IF	CITATIONS
1	Preventing White Adipocyte Browning during Differentiation In Vitro: The Effect of Differentiation Protocols on Metabolic and Mitochondrial Phenotypes. Stem Cells International, 2022, 2022, 1-21.	1.2	2
2	Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome. PLoS Pathogens, 2021, 17, e1009400.	2.1	11
3	Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. Journal of Allergy and Clinical Immunology, 2021, 148, 599-611.	1.5	23
4	Parity associates with chromosomal damage in uterine leiomyomas. Nature Communications, 2021, 12, 5448.	5.8	2
5	SARS oVâ€2–host proteome interactions for antiviral drug discovery. Molecular Systems Biology, 2021, 17, e10396.	3.2	53
6	The Pro-Oncogenic Adaptor CIN85 Acts as an Inhibitory Binding Partner of Hypoxia-Inducible Factor Prolyl Hydroxylase 2. Cancer Research, 2019, 79, 4042-4056.	0.4	8
7	A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biology, 2019, 24, 101182.	3.9	25
8	N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme–multi-transporter assemblies in golgi membranes in vivo. Cellular and Molecular Life Sciences, 2019, 76, 1821-1832.	2.4	35
9	Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxidants and Redox Signaling, 2019, 30, 5-21.	2.5	19
10	LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors, 2018, 18, 3346.	2.1	11
11	The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS ONE, 2018, 13, e0205571.	1.1	15
12	Dermatan sulfate epimerase 1 and dermatan 4-O-sulfotransferase 1 form complexes that generate long epimerized 4-O-sulfated blocks. Journal of Biological Chemistry, 2018, 293, 13725-13735.	1.6	26
13	Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, 2017, 8, 1483.	5.8	67
14	Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring. Beilstein Journal of Nanotechnology, 2016, 7, 1871-1877.	1.5	12
15	Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cellular and Molecular Life Sciences, 2016, 73, 305-325.	2.4	64
16	UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cellular and Molecular Life Sciences, 2016, 73, 3183-3204.	2.4	45
17	Low Temperature Co-fired Ceramic Package for Lab-on-CMOS Applied in Cell Viability Monitoring. Procedia Engineering, 2015, 120, 1079-1082.	1.2	6
18	Heterodimers of Tyrosylprotein Sulfotransferases Suggest Existence of a Higher Organization Level of Transferases in the Membrane of the trans-Golgi Apparatus. Journal of Molecular Biology, 2015, 427, 1404-1412.	2.0	16

ANTTI HASSINEN

#	Article	IF	CITATIONS
19	Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3. Journal of Biological Chemistry, 2015, 290, 11479-11490.	1.6	31
20	GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain. ELife, 2015, 4, .	2.8	17
21	Organizational Interplay of Golgi N-Glycosyltransferases Involves Organelle Microenvironment-Dependent Transitions between Enzyme Homo- and Heteromers. Journal of Biological Chemistry, 2014, 289, 26937-26948.	1.6	47
22	Golgi pH, its regulation and roles in human disease. Annals of Medicine, 2012, 44, 542-554.	1.5	75
23	Functional Organization of Golgi N- and O-Glycosylation Pathways Involves pH-dependent Complex Formation That Is Impaired in Cancer Cells. Journal of Biological Chemistry, 2011, 286, 38329-38340.	1.6	109
24	Golgi N-Glycosyltransferases Form Both Homo- and Heterodimeric Enzyme Complexes in Live Cells. Journal of Biological Chemistry, 2010, 285, 17771-17777.	1.6	68
25	Elevated Golgi pH impairs terminal <i>N</i> â€glycosylation by inducing mislocalization of Golgi glycosyltransferases. Journal of Cellular Physiology, 2009, 220, 144-154.	2.0	129
26	The Catalysis of the 1,1-Proton Transfer by α-Methyl-acyl-CoA Racemase Is Coupled to a Movement of the Fatty Acyl Moiety Over a Hydrophobic, Methionine-rich Surface. Journal of Molecular Biology, 2007, 367, 1145-1161.	2.0	39