Antti Hassinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150954/publications.pdf

Version: 2024-02-01

516561 552653 26 958 16 26 citations h-index g-index papers 29 29 29 1540 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Elevated Golgi pH impairs terminal <i>N</i> àêglycosylation by inducing mislocalization of Golgi glycosyltransferases. Journal of Cellular Physiology, 2009, 220, 144-154.	2.0	129
2	Functional Organization of Golgi N- and O-Glycosylation Pathways Involves pH-dependent Complex Formation That Is Impaired in Cancer Cells. Journal of Biological Chemistry, 2011, 286, 38329-38340.	1.6	109
3	Golgi pH, its regulation and roles in human disease. Annals of Medicine, 2012, 44, 542-554.	1.5	7 5
4	Golgi N-Glycosyltransferases Form Both Homo- and Heterodimeric Enzyme Complexes in Live Cells. Journal of Biological Chemistry, 2010, 285, 17771-17777.	1.6	68
5	Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, 2017, 8, 1483.	5. 8	67
6	Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cellular and Molecular Life Sciences, 2016, 73, 305-325.	2.4	64
7	SARSâ€CoVâ€2–host proteome interactions for antiviral drug discovery. Molecular Systems Biology, 2021, 17, e10396.	3.2	53
8	Organizational Interplay of Golgi N-Glycosyltransferases Involves Organelle Microenvironment-Dependent Transitions between Enzyme Homo- and Heteromers. Journal of Biological Chemistry, 2014, 289, 26937-26948.	1.6	47
9	UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cellular and Molecular Life Sciences, 2016, 73, 3183-3204.	2.4	45
10	The Catalysis of the 1,1-Proton Transfer by \hat{l} ±-Methyl-acyl-CoA Racemase Is Coupled to a Movement of the Fatty Acyl Moiety Over a Hydrophobic, Methionine-rich Surface. Journal of Molecular Biology, 2007, 367, 1145-1161.	2.0	39
11	N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme–multi-transporter assemblies in golgi membranes in vivo. Cellular and Molecular Life Sciences, 2019, 76, 1821-1832.	2.4	35
12	Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3. Journal of Biological Chemistry, 2015, 290, 11479-11490.	1.6	31
13	Dermatan sulfate epimerase 1 and dermatan 4-O-sulfotransferase 1 form complexes that generate long epimerized 4-O-sulfated blocks. Journal of Biological Chemistry, 2018, 293, 13725-13735.	1.6	26
14	A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biology, 2019, 24, 101182.	3.9	25
15	Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. Journal of Allergy and Clinical Immunology, 2021, 148, 599-611.	1.5	23
16	Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxidants and Redox Signaling, 2019, 30, 5-21.	2.5	19
17	GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain. ELife, 2015, 4, .	2.8	17
18	Heterodimers of Tyrosylprotein Sulfotransferases Suggest Existence of a Higher Organization Level of Transferases in the Membrane of the trans-Golgi Apparatus. Journal of Molecular Biology, 2015, 427, 1404-1412.	2.0	16

#	Article	IF	CITATIONS
19	The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS ONE, 2018, 13, e0205571.	1.1	15
20	Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring. Beilstein Journal of Nanotechnology, 2016, 7, 1871-1877.	1.5	12
21	LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors, 2018, 18, 3346.	2.1	11
22	Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome. PLoS Pathogens, 2021, 17, e1009400.	2.1	11
23	The Pro-Oncogenic Adaptor CIN85 Acts as an Inhibitory Binding Partner of Hypoxia-Inducible Factor Prolyl Hydroxylase 2. Cancer Research, 2019, 79, 4042-4056.	0.4	8
24	Low Temperature Co-fired Ceramic Package for Lab-on-CMOS Applied in Cell Viability Monitoring. Procedia Engineering, 2015, 120, 1079-1082.	1.2	6
25	Parity associates with chromosomal damage in uterine leiomyomas. Nature Communications, 2021, 12, 5448.	5.8	2
26	Preventing White Adipocyte Browning during Differentiation In Vitro: The Effect of Differentiation Protocols on Metabolic and Mitochondrial Phenotypes. Stem Cells International, 2022, 2022, 1-21.	1,2	2