Maria-Christina Zennaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215095/publications.pdf

Version: 2024-02-01

121 papers

6,504 citations

57758 44 h-index 69250 77 g-index

124 all docs

124 docs citations

times ranked

124

4837 citing authors

#	Article	IF	CITATIONS
1	Colocalization of Wnt/ \hat{l}^2 -Catenin and ACTH Signaling Pathways and Paracrine Regulation in Aldosterone-producing Adenoma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 419-434.	3.6	5
2	Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nature Genetics, 2021, 53, 1360-1372.	21.4	37
3	Circulating microRNAs as Diagnostic Markers in Primary Aldosteronism. Cancers, 2021, 13, 5312.	3.7	6
4	Renin-aldosterone system evaluation over four decades in an extended family with autosomal dominant pseudohypoaldosteronism due to a deletion in the NR3C2 gene. Journal of Steroid Biochemistry and Molecular Biology, 2020, 204, 105755.	2.5	8
5	Pathogenesis and treatment of primary aldosteronism. Nature Reviews Endocrinology, 2020, 16, 578-589.	9.6	65
6	Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension â^—. Journal of Hypertension, 2020, 38, 1919-1928.	0.5	151
7	Genetic, Cellular, and Molecular Heterogeneity in Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2020, 75, 1034-1044.	2.7	89
8	Glucocorticoid Excess in Patients with Pheochromocytoma Compared with Paraganglioma and Other Forms of Hypertension. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3374-e3383.	3.6	17
9	Genetic and Genomic Mechanisms of Primary Aldosteronism. Trends in Molecular Medicine, 2020, 26, 819-832.	6.7	20
10	Old and new genes in primary aldosteronism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101375.	4.7	13
11	Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nature Communications, 2019, 10, 4678.	12.8	33
12	Retinoic acid receptor \hat{l}_{\pm} as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling. Scientific Reports, 2019, 9, 14677.	3.3	10
13	Germline and somatic genetic basis of primary aldosteronism. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 160-166.	1.4	0
14	From Transcripts to Proteins. Hypertension, 2019, 73, 284-285.	2.7	2
15	Molecular mechanisms in primary aldosteronism. Journal of Endocrinology, 2019, 242, R67-R79.	2.6	4
16	Simultaneous sequencing of 37 genes identified causative mutations in the majority of children with renal tubulopathies. Kidney International, 2018, 93, 961-967.	5.2	77
17	A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nature Genetics, 2018, 50, 355-361.	21.4	154
18	Overview of aldosterone-related genetic syndromes and recent advances. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 147-154.	2.3	6

#	Article	IF	CITATIONS
19	MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes. International Journal of Molecular Sciences, 2018, 19, 2941.	4.1	11
20	Molecular genetics of Conn adenomas in the era of exome analysis. Presse Medicale, 2018, 47, e151-e158.	1.9	5
21	Somatic and inherited mutations in primary aldosteronism. Journal of Molecular Endocrinology, 2017, 59, R47-R63.	2.5	42
22	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor mutations. Journal of Endocrinology, 2017, 234, T93-T106.	2.6	39
23	Genetic Causes of Functional Adrenocortical Adenomas. Endocrine Reviews, 2017, 38, 516-537.	20.1	72
24	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The scientific impact of cloning the mineralocorticoid receptor: 30 years on. Journal of Endocrinology, 2017, 234, E3-E6.	2.6	4
25	Pseudohypoaldosteronism types I and II: little more than a name in common. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 597-601.	0.9	17
26	CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism. EBioMedicine, 2016, 13, 225-236.	6.1	119
27	Aldosterone-Producing Adenoma With a Somatic KCNJ5 Mutation Revealing APC-Dependent Familial Adenomatous Polyposis. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3874-3878.	3.6	32
28	[OP.3A.02] RETINOIC ACID RECEPTOR SIGNALING CONTRIBUTES TO ADRENAL CORTEX MORPHOLOGY AND FUNCTIONAL ZONATION. Journal of Hypertension, 2016, 34, e26.	0.5	0
29	[OP.LB01.12] CACNA1H MUTATIONS ARE ASSOCIATED WITH YOUNG ONSET AND FAMILIAL FORMS OF PRIMARY ALDOSTERONISM. Journal of Hypertension, 2016, 34, e39.	0.5	O
30	SFE/SFHTA/AFCE consensus on primary aldosteronism, part 5: Genetic diagnosis of primary aldosteronism. Annales D'Endocrinologie, 2016, 77, 214-219.	1.4	17
31	SFE/SFHTA/AFCE primary aldosteronism consensus: Introduction and handbook. Annales D'Endocrinologie, 2016, 77, 179-186.	1.4	50
32	Local Control of Aldosterone Production and Primary Aldosteronism. Trends in Endocrinology and Metabolism, 2016, 27, 123-131.	7.1	29
33	Renal Tubular Disorders of Electrolyte Regulation in Children. , 2016, , 1201-1271.		2
34	CO-33: Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma. Annales De Cardiologie Et D'Angeiologie, 2015, 64, S16.	0.6	O
35	Overweight Is a Major Contributor to Atherosclerosis in Systemic Lupus Erythematosus Patients at Apparent Low Risk for Cardiovascular Disease. Medicine (United States), 2015, 94, e2177.	1.0	21
36	Molecular and Cellular Mechanisms of Aldosterone Producing Adenoma Development. Frontiers in Endocrinology, 2015, 6, 95.	3 . 5	20

#	Article	IF	CITATIONS
37	Bilateral Idiopathic Adrenal Hyperplasia: Genetics and Beyond. Hormone and Metabolic Research, 2015, 47, 947-952.	1.5	19
38	An update on novel mechanisms of primary aldosteronism. Journal of Endocrinology, 2015, 224, R63-R77.	2.6	56
39	Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms. Molecular and Cellular Endocrinology, 2015, 408, 198-204.	3.2	21
40	Inherited forms of mineralocorticoid hypertension. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 633-645.	4.7	32
41	Functional histopathological markers of aldosterone producing adenoma and somatic KCNJ5 mutations. Molecular and Cellular Endocrinology, 2015, 408, 220-226.	3.2	23
42	Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2015, 66, 1014-1022.	2.7	55
43	Mast Cell Hyperplasia Is Associated With Aldosterone Hypersecretion in a Subset of Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E550-E560.	3.6	32
44	Renal Tubular Disorders of Electrolyte Regulation in Children. , 2015, , 1-80.		0
45	Genetic Spectrum and Clinical Correlates of Somatic Mutations in Aldosterone-Producing Adenoma. Hypertension, 2014, 64, 354-361.	2.7	248
46	WNT/ \hat{l}^2 -catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Human Molecular Genetics, 2014, 23, 889-905.	2.9	157
47	Increased Arterial Stiffness in Systemic Lupus Erythematosus (SLE) Patients at Low Risk for Cardiovascular Disease: A Cross-Sectional Controlled Study. PLoS ONE, 2014, 9, e94511.	2.5	64
48	Diastrophic Dysplasia Sulfate Transporter (SLC26A2) Is Expressed in the Adrenal Cortex and Regulates Aldosterone Secretion. Hypertension, 2014, 63, 1102-1109.	2.7	21
49	Activation of the Hypothalamic-Pituitary-Adrenal Axis in Adults With Mineralocorticoid Receptor Haploinsufficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1586-E1591.	3.6	10
50	From Genetic Abnormalities to Pathophysiological Mechanisms. , 2014, , 53-74.		0
51	Pseudohypoaldosteronism type 1: Management issues. Indian Pediatrics, 2013, 50, 331-333.	0.4	7
52	Cardiovascular Effects of Aldosterone. Circulation: Cardiovascular Genetics, 2013, 6, 381-390.	5.1	27
53	KCNJ5 mutations in aldosterone producing adenoma and relationship with adrenal cortex remodeling. Molecular and Cellular Endocrinology, 2013, 371, 221-227.	3.2	38
54	Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nature Genetics, 2013, 45, 440-444.	21.4	460

#	Article	IF	CITATIONS
55	Genetics in endocrinology: Genetics of mineralocorticoid excess: an update for clinicians. European Journal of Endocrinology, 2013, 169, R15-R25.	3.7	26
56	Progress in Primary Aldosteronism 2. Hormone and Metabolic Research, 2012, 44, 155-156.	1.5	0
57	<i>KCNJ5</i> Mutations in European Families With Nonglucocorticoid Remediable Familial Hyperaldosteronism. Hypertension, 2012, 59, 235-240.	2.7	176
58	Primary Aldosteronism Takes (KCNJ)Five!. Endocrinology, 2012, 153, 1575-1577.	2.8	2
59	Task3 Potassium Channel Gene Invalidation Causes Low Renin and Salt-Sensitive Arterial Hypertension. Endocrinology, 2012, 153, 4740-4748.	2.8	63
60	Dkk3 is a component of the genetic circuitry regulating aldosterone biosynthesis in the adrenal cortex. Human Molecular Genetics, 2012, 21, 4922-4929.	2.9	22
61	Integrating Genetics and Genomics in Primary Aldosteronism. Hypertension, 2012, 60, 580-588.	2.7	22
62	A network perspective on metabolic inconsistency. BMC Systems Biology, 2012, 6, 41.	3.0	26
63	Prevalence, Clinical, and Molecular Correlates of <i>KCNJ5</i> Mutations in Primary Aldosteronism. Hypertension, 2012, 59, 592-598.	2.7	246
64	Aldosterone resistance: Structural and functional considerations and new perspectives. Molecular and Cellular Endocrinology, 2012, 350, 206-215.	3.2	60
65	The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Molecular and Cellular Endocrinology, 2012, 350, 281-288.	3.2	109
66	Pseudohypoaldosteronism type 1: the index case revisited. Clinical Endocrinology, 2011, 74, 408-410.	2.4	4
67	Progesterone increase counteracts aldosterone action in a pregnant woman with primary aldosteronism. Clinical Endocrinology, 2011, 74, 278-279.	2.4	25
68	Mineralocorticoid Receptor Mutations Differentially Affect Individual Gene Expression Profiles in Pseudohypoaldosteronism Type 1. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E519-E527.	3.6	30
69	Antiadipogenic Effects of the Mineralocorticoid Receptor Antagonist Drospirenone: Potential Implications for the Treatment of Metabolic Syndrome. Endocrinology, 2011, 152, 113-125.	2.8	124
70	Aldosterone-Producing Adenoma Formation in the Adrenal Cortex Involves Expression of Stem/Progenitor Cell Markers. Endocrinology, 2011, 152, 4753-4763.	2.8	85
71	Mutations in KCNJ5 Gene Cause Hyperaldosteronism. Circulation Research, 2011, 108, 1417-1418.	4.5	16
72	Mineralocorticoid Receptor Mutations and a Severe Recessive Pseudohypoaldosteronism Type 1. Journal of the American Society of Nephrology: JASN, 2011, 22, 1997-2003.	6.1	33

#	Article	IF	Citations
73	A homozygous missense mutation in SCNN1A is responsible for a transient neonatal form of pseudohypoaldosteronism type 1. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E467-E473.	3.5	35
74	A Homozygous Missense Mutation in SCNN1A Is Responsible for a Transient Form of Pseudohypoaldosteronism Type $1.,2011,$, P2-740-P2-740.		1
75	Asymptomatic myocardial ischemic disease in antiphospholipid syndrome: A controlled cardiac magnetic resonance imaging study. Arthritis and Rheumatism, 2010, 62, 2093-2100.	6.7	43
76	The Functional c2G>C Variant of the Mineralocorticoid Receptor Modulates Blood Pressure, Renin, and Aldosterone Levels. Hypertension, 2010, 56, 995-1002.	2.7	46
77	Adrenal Cortex Remodeling and Functional Zona Glomerulosa Hyperplasia in Primary Aldosteronism. Hypertension, 2010, 56, 885-892.	2.7	128
78	Analysis of Insulin Sensitivity in Adipose Tissue of Patients with Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4037-4042.	3 . 6	40
79	Mineralocorticoid receptors in the metabolic syndrome. Trends in Endocrinology and Metabolism, 2009, 20, 444-451.	7.1	69
80	Tubular Disorders of Electrolyte Regulation. , 2009, , 929-977.		9
81	Potential role of progestogens in the control of adipose tissue and salt sensitivity via interaction with the mineralocorticoid receptor. Climacteric, 2008, 11, 258-264.	2.4	6
82	Pseudohypoaldosteronisms, report on a 10-patient series. Nephrology Dialysis Transplantation, 2008, 23, 1636-1641.	0.7	69
83	The Mineralocorticoid Receptor in Endothelial Physiology and Disease: Novel Concepts in the Understanding of Erectile Dysfunction. Current Pharmaceutical Design, 2008, 14, 3749-3757.	1.9	19
84	Pivotal role of the mineralocorticoid receptor in corticosteroidâ€induced adipogenesis. FASEB Journal, 2007, 21, 2185-2194.	0.5	277
85	Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Human Mutation, 2007, 28, 33-40.	2.5	79
86	A Common Polymorphism in the Mineralocorticoid Receptor Modulates Stress Responsiveness. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 5083-5089.	3 . 6	188
87	Autosomal Dominant Pseudohypoaldosteronism Type 1. Journal of the American Society of Nephrology: JASN, 2006, 17, 1429-1436.	6.1	118
88	Enhancement of \hat{l}^2 -adrenergic cAMP-signaling by the mineralocorticoid receptor. Molecular and Cellular Endocrinology, 2005, 231, 23-31.	3.2	15
89	Prolactin potentiates insulin-stimulated leptin expression and release from differentiated brown adipocytes. Journal of Molecular Endocrinology, 2004, 33, 679-691.	2.5	32
90	New Naturally Occurring Missense Mutations of the Human Mineralocorticoid Receptor Disclose Important Residues Involved in Dynamic Interactions with Deoxyribonucleic Acid, Intracellular Trafficking, and Ligand Binding. Molecular Endocrinology, 2004, 18, 2151-2165.	3.7	37

#	Article	IF	Citations
91	Mineralocorticoid resistance. Trends in Endocrinology and Metabolism, 2004, 15, 264-270.	7.1	75
92	Inactivating mutations of the mineralocorticoid receptor in Type I pseudohypoaldosteronism. Molecular and Cellular Endocrinology, 2004, 217, 119-125.	3.2	61
93	Expression and function of the human mineralocorticoid receptor: lessons from transgenic mouse models. Molecular and Cellular Endocrinology, 2004, 217, 127-136.	3.2	41
94	GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal–induced apoptosis. Blood, 2004, 104, 215-223.	1.4	139
95	Aldosterone Receptors. , 2004, , 158-163.		0
96	Different Inactivating Mutations of the Mineralocorticoid Receptor in Fourteen Families Affected by Type I Pseudohypoaldosteronism. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2508-2517.	3.6	81
97	Protein Inhibitor of Activated Signal Transducer and Activator of Transcription 1 Interacts with the N-Terminal Domain of Mineralocorticoid Receptor and Represses Its Transcriptional Activity: Implication of Small Ubiquitin-Related Modifier 1 Modification. Molecular Endocrinology, 2003, 17, 2529-2542.	3.7	109
98	Mineralocorticoid Receptor, Natural Mutations of., 2003,, 691-695.		0
99	Characterization of Rat NDRG2 (N-Myc Downstream Regulated Gene 2), a Novel Early Mineralocorticoid-specific Induced Gene. Journal of Biological Chemistry, 2002, 277, 31506-31515.	3.4	131
100	Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Letters, 2002, 532, 345-350.	2.8	103
101	Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E640-E649.	3.5	90
102	Alteration of Cardiac and Renal Functions in Transgenic Mice Overexpressing Human Mineralocorticoid Receptor. Journal of Biological Chemistry, 2001, 276, 38911-38920.	3.4	106
103	A New Human MR Splice Variant Is a Ligand-Independent Transactivator Modulating Corticosteroid Action. Molecular Endocrinology, 2001, 15, 1586-1598.	3.7	94
104	A New Human MR Splice Variant Is a Ligand-Independent Transactivator Modulating Corticosteroid Action. Molecular Endocrinology, 2001, 15, 1586-1598.	3.7	32
105	Transgenic mouse models to study human mineralocorticoid receptor function in vivo. Kidney International, 2000, 57, 1299-1306.	5.2	15
106	The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E386-E394.	3.5	70
107	Targeted Oncogenesis Reveals a Distinct Tissue-specific Utilization of Alternative Promoters of the Human Mineralocorticoid Receptor Gene in Transgenic Mice. Journal of Biological Chemistry, 2000, 275, 7878-7886.	3.4	44
108	Mineralocorticoid receptor isoforms. Current Opinion in Endocrinology, Diabetes and Obesity, 1998, 5, 183-188.	0.6	5

#	Article	IF	Citations
109	Syndromes of glucocorticoid and mineralocorticoid resistance. European Journal of Endocrinology, 1998, 139, 127-138.	3.7	14
110	Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action Journal of Clinical Investigation, 1998, 101, 1254-1260.	8.2	118
111	Tissue-Specific Expression of \hat{I}_{\pm} and \hat{I}_{\pm}^2 Messenger Ribonucleic Acid Isoforms of the Human Mineralocorticoid Receptor in Normal and Pathological States. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1345-1352.	3.6	65
112	Tissue-Specific Expression of and Messenger Ribonucleic Acid Isoforms of the Human Mineralocorticoid Receptor in Normal and Pathological States. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1345-1352.	3.6	59
113	Mineralocorticoid resistance. Steroids, 1996, 61, 189-192.	1.8	13
114	Characterization of the human mineralocorticoid receptor gene 5'- regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Molecular Endocrinology, 1996, 10, 1549-1560.	3.7	61
115	Human Mineralocorticoid Receptor Genomic Structure and Identification of Expressed Isoforms. Journal of Biological Chemistry, 1995, 270, 21016-21020.	3.4	131
116	Pseudohypoaldosteronism: Evaluation of type I receptors by radioreceptor assay and by antireceptor antibodies. Steroids, 1995, 60, 161-163.	1.8	5
117	Molecular characterization of the mineralocorticoid receptor in pseudohypoaldosteronism. Steroids, 1995, 60, 164-167.	1.8	12
118	No alteration in the primary structure of the mineralocorticoid receptor in a family with pseudohypoaldosteronism. Journal of Clinical Endocrinology and Metabolism, 1994, 79, 32-38.	3.6	40
119	Regulation of aldosterone receptors in hypertension. Steroids, 1993, 58, 611-613.	1.8	9
120	Corticosteroid receptors and aging. Journal of Steroid Biochemistry and Molecular Biology, 1993, 45, 191-194.	2.5	17
121	Pseudohypoaldosteronism and mineralocorticoid receptor abnormalities. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 363-365.	2.5	18