Jian-Kang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150616/publications.pdf

Version: 2024-02-01

19	5,399	11	18
papers	citations	h-index	g-index
19	19	19	14912
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Epoxyeicosatrienoic Acids and Their Sulfonimide Derivatives Stimulate Tyrosine Phosphorylation and Induce Mitogenesis in Renal Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 29254-29261.	3.4	123
3	Role of Mammalian Target of Rapamycin Signaling in Compensatory Renal Hypertrophy. Journal of the American Society of Nephrology: JASN, 2005, 16, 1384-1391.	6.1	120
4	EGF Receptor Deletion in Podocytes Attenuates Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1115-1125.	6.1	109
5	mVps34 Deletion in Podocytes Causes Glomerulosclerosis by Disrupting Intracellular Vesicle Trafficking. Journal of the American Society of Nephrology: JASN, 2013, 24, 198-207.	6.1	72
6	S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. American Journal of Physiology - Renal Physiology, 2009, 297, F585-F593.	2.7	68
7	Phosphatidylinositol 3-kinase signaling determines kidney size. Journal of Clinical Investigation, 2015, 125, 2429-2444.	8.2	55
8	DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney International, 2017, 92, 1194-1205.	5.2	43
9	Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney International, 2015, 87, 543-556.	5.2	26
10	Overexpression of G-Protein-Coupled Receptor 40 Enhances the Mitogenic Response to Epoxyeicosatrienoic Acids. PLoS ONE, 2015, 10, e0113130.	2.5	19
11	Dicer deficiency in proximal tubules exacerbates renal injury and tubulointerstitial fibrosis and upregulates Smad2/3. American Journal of Physiology - Renal Physiology, 2018, 315, F1822-F1832.	2.7	14
12	Metformin effectively treats Tsc1 deletion-caused kidney pathology by upregulating AMPK phosphorylation. Cell Death Discovery, 2020, 6, 52.	4.7	13
13	The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis. Kidney International, 2019, 95, 1359-1372.	5.2	11
14	Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion–Induced Kidney Growth. Journal of the American Society of Nephrology: JASN, 2016, 27, 1145-1158.	6.1	10
15	The expression level of class III phosphatidylinositol-3 kinase controls the degree of compensatory nephron hypertrophy. American Journal of Physiology - Renal Physiology, 2020, 318, F628-F638.	2.7	6
16	Cre/loxP approachâ€mediated downregulation of Pik3c3 inhibits the hypertrophic growth of renal proximal tubule cells. Journal of Cellular Physiology, 2020, 235, 9958-9973.	4.1	4
17	Blocking ribosomal protein S6 phosphorylation inhibits podocyte hypertrophy and focal segmental glomerulosclerosis. Kidney International, 2022, , .	5.2	3
18	PIK3C3/VPS34, the class III PtdIns 3-kinase, plays indispensable roles in the podocyte. Autophagy, 2013, 9, 923-924.	9.1	2

#	Article	IF	CITATIONS
19	Renal Collecting Duct Cellâ€specific mVps34 Deletion Decreases Nephron Number and Increases Nephron Size. FASEB Journal, 2013, 27, 705.11.	0.5	O