Claire Laure Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lamin A Truncation in Hutchinson-Gilford Progeria. Science, 2003, 300, 2055-2055.	12.6	1,247
2	Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nature Medicine, 2008, 14, 767-772.	30.7	355
3	Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging. Science Translational Medicine, 2011, 3, 106ra107.	12.4	334
4	Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Human Molecular Genetics, 2004, 13, 2493-2503.	2.9	325
5	Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Human Molecular Genetics, 2005, 14, 1503-1513.	2.9	258
6	Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2019, 35, 497-505.	4.1	183
7	Molecular bases of progeroid syndromes. Human Molecular Genetics, 2006, 15, R151-R161.	2.9	162
8	Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA. Cell Reports, 2012, 2, 1-9.	6.4	149
9	SHAPE AND TEXTURE INDEXES APPLICATION TO CELL NUCLEI CLASSIFICATION. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27, 1357002.	1.2	142
10	<scp>MG</scp> 132â€induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Molecular Medicine, 2017, 9, 1294-1313.	6.9	101
11	HGPS and related premature aging disorders: From genomic identification to the first therapeutic approaches. Mechanisms of Ageing and Development, 2008, 129, 449-459.	4.6	81
12	A conserved splicing mechanism of the LMNA gene controls premature aging. Human Molecular Genetics, 2011, 20, 4540-4555.	2.9	77
13	Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Seminars in Cell and Developmental Biology, 2014, 29, 125-147.	5.0	63
14	New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. European Journal of Human Genetics, 2014, 22, 1002-1011.	2.8	51
15	Metformin decreases progerin expression and alleviates pathological defects of Hutchinson–Cilford progeria syndrome cells. Npj Aging and Mechanisms of Disease, 2016, 2, 16026.	4.5	48
16	Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. European Journal of Human Genetics, 2011, 19, 647-654.	2.8	44
17	Induced Pluripotent Stem Cells Reveal Functional Differences Between Drugs Currently Investigated in Patients With Hutchinson-Gilford Progeria Syndrome. Stem Cells Translational Medicine, 2014, 3, 510-519.	3.3	44
18	An inherited <i>LMNA</i> gene mutation in atypical Progeria syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 2881-2887.	1.2	40

CLAIRE LAURE NAVARRO

#	Article	IF	CITATIONS
19	Antisense-Based Progerin Downregulation in HGPS-Like Patients' Cells. Cells, 2016, 5, 31.	4.1	34
20	Absence of T and B lymphocytes modulates dystrophic features in dysferlin deficient animal model. Experimental Cell Research, 2012, 318, 1160-1174.	2.6	26
21	Truncated prelamin A expression in HGPS-like patients: a transcriptional study. European Journal of Human Genetics, 2015, 23, 1051-1061.	2.8	24
22	Prelamin A processing and functional effects in restrictive dermopathy. Cell Cycle, 2010, 9, 4766-4768.	2.6	22
23	Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nature Communications, 2020, 11, 4110.	12.8	20
24	Identification of Different Genomic Deletions and One Duplication in the Dysferlin Gene Using Multiplex Ligation-Dependent Probe Amplification and Genomic Quantitative PCR. Genetic Testing and Molecular Biomarkers, 2009, 13, 439-442.	0.7	18
25	Fullâ€length dysferlin expression driven by engineered human dystrophic blood derived <scp>CD</scp> 133+ stem cells. FEBS Journal, 2013, 280, 6045-6060.	4.7	12
26	A New Lamin A Mutation Associated with Acrogeria Syndrome. Journal of Investigative Dermatology, 2014, 134, 2274-2277.	0.7	9
27	Substrate Topography Modulates Cell Aging on a Progeria Cell Model. ACS Biomaterials Science and Engineering, 2018, 4, 1498-1504.	5.2	6
28	<i>LMNA</i> , <i>ZMPSTE24</i> , and <i>LBR</i> Are Not Mutated in Scleroderma. Genetic Testing and Molecular Biomarkers, 2009, 13, 635-639.	0.7	2