Todd M Herrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150213/publications.pdf

Version: 2024-02-01

19 papers 2,248 citations

623734 14 h-index 752698 20 g-index

20 all docs

20 docs citations

times ranked

20

2831 citing authors

#	Article	IF	Citations
1	Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neurolmage, 2019, 184, 293-316.	4.2	527
2	Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. NeuroImage, 2018, 170, 271-282.	4.2	422
3	Mechanisms of deep brain stimulation. Journal of Neurophysiology, 2016, 115, 19-38.	1.8	354
4	Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease. New England Journal of Medicine, 2020, 382, 1926-1932.	27.0	298
5	Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson's disease. Science Translational Medicine, 2021, 13, .	12.4	108
6	Optimization and comparative evaluation of nonlinear deformation algorithms for atlas-based segmentation of DBS target nuclei. NeuroImage, 2019, 184, 586-598.	4.2	107
7	The Effect of Microsaccades on the Correlation between Neural Activity and Behavior in Middle Temporal, Ventral Intraparietal, and Lateral Intraparietal Areas. Journal of Neuroscience, 2009, 29, 5793-5805.	3.6	97
8	Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants. NeuroImage, 2017, 147, 577-588.	4.2	58
9	Neural Activity in the Middle Temporal Area and Lateral Intraparietal Area during Endogenously Cued Shifts of Attention. Journal of Neuroscience, 2009, 29, 14160-14176.	3.6	53
10	Temporal Sequence of Attentional Modulation in the Lateral Intraparietal Area and Middle Temporal Area during Rapid Covert Shifts of Attention. Journal of Neuroscience, 2010, 30, 3287-3296.	3.6	53
11	Î ² -Glucocerebrosidase activity in <i>GBA</i> -linked Parkinson disease. Neurology, 2020, 95, e685-e696.	1.1	27
12	The Neural Basis of Approach-Avoidance Conflict: A Model Based Analysis. ENeuro, 2019, 6, ENEURO.0115-19.2019.	1.9	23
13	Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences. Annals of Neurology, 2022, 91, 613-628.	5.3	22
14	Dorsolateral prefrontal neurons mediate subjective decisions and their variation in humans. Nature Neuroscience, 2019, 22, 1010-1020.	14.8	17
15	Teaching Neurolmages: In vivo visualization of Edinger comb and Wilson pencils. Neurology, 2019, 92, e1663-e1664.	1.1	16
16	Intermittent subthalamic nucleus deep brain stimulation induces risk-aversive behavior in human subjects. ELife, 2018, 7, .	6.0	10
17	Structural and Functional Network Dysfunction in Parkinson Disease. Radiology, 2017, 285, 725-727.	7.3	8
18	Toward a Personalized Approach to Parkinson's Cell Therapy. Movement Disorders, 2020, 35, 2119-2120.	3.9	4

#	Article	IF	CITATIONS
19	Letter to the Editor. Cell therapy for Parkinson's disease. Journal of Neurosurgery, 2022, 136, 1810-1811.	1.6	1