
Yaoling Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2149519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protoliths and metamorphism of the central Himalayan eclogites: Zircon/titanite U–Pb geochronology, Hf isotope and geochemistry. Gondwana Research, 2022, 104, 39-53.	6.0	7
2	Middle-Late Jurassic magmatism in the west central Lhasa subterrane, Tibet: Petrology, zircon chronology, elemental and Sr-Nd-Pb-Hf-Mg isotopic geochemistry. Lithos, 2022, 408-409, 106549.	1.4	1
3	Molybdenum isotope systematics of lavas from the East Pacific Rise: Constraints on the source of enriched mid-ocean ridge basalt. Earth and Planetary Science Letters, 2022, 578, 117283.	4.4	21
4	A simple and robust method for calculating temperatures of granitoid magmas. Mineralogy and Petrology, 2022, 116, 93-103.	1.1	8
5	Sublithosphere Mantle Crystallization and Immiscible Sulfide Melt Segregation in Continental Basalt Magmatism: Evidence from Clinopyroxene Megacrysts in the Cenozoic Basalts of Eastern China. Journal of Petrology, 2022, 63, .	2.8	5
6	Paradigm shift for controls on basalt magmatism: Discussion with Lustrino et al on the paper I recently published in Earth-Science Reviews. Earth-Science Reviews, 2022, 226, 103943.	9.1	2
7	Re-assessment of the effect of fractional crystallization on Mo isotopes: Constraints from I-type granitoids and their enclosed mafic magmatic enclaves. Chemical Geology, 2022, 597, 120814.	3.3	8
8	Petrogenesis of the early Cretaceous intra-plate basalts from the Western North China Craton: Implications for the origin of the metasomatized cratonic lithospheric mantle. Lithos, 2021, 380-381, 105887.	1.4	6
9	Fractional crystallization causes the iron isotope contrast between mid-ocean ridge basalts and abyssal peridotites. Communications Earth & Environment, 2021, 2, .	6.8	17
10	Timing of the Meso-Tethys Ocean opening: Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane, Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110265.	2.3	27
11	lron Isotope Fractionation during Skarn Cu-Fe Mineralization. Minerals (Basel, Switzerland), 2021, 11, 444.	2.0	3
12	Iron Isotope Compositions of Coexisting Sulfide and Silicate Minerals in Sudbury-Type Ores from the Jinchuan Ni-Cu Sulfide Deposit: A Perspective on Possible Core-Mantle Iron Isotope Fractionation. Minerals (Basel, Switzerland), 2021, 11, 464.	2.0	4
13	Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth – A review and new perspectives. Earth-Science Reviews, 2021, 217, 103614.	9.1	59
14	Eastern China continental lithosphere thinning is a consequence of paleo-Pacific plate subduction: A review and new perspectives. Earth-Science Reviews, 2021, 218, 103680.	9.1	35
15	The nature and origin of upper mantle heterogeneity beneath the Mid-Atlantic Ridge 33–35°N: A Sr-Nd-Hf isotopic perspective. Geochimica Et Cosmochimica Acta, 2021, 307, 72-85.	3.9	6
16	An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts. Earth and Planetary Science Letters, 2021, 572, 117133.	4.4	17
17	Petrogenesis and tectonic implications of the Triassic rhyolites in the East Kunlun Orogenic Belt, northern Tibetan Plateau. Geoscience Frontiers, 2021, 12, 101243.	8.4	17
18	Identifying deep recycled carbonates through Miocene basalts in the Maguan area, SE Tibetan Plateau. Lithos, 2021, 400-401, 106356.	1.4	2

#	Article	IF	CITATIONS
19	Petrogenetic evolution of the Zhuopan potassic alkaline complex, western Yunnan, SW China: Implications for heterogeneous metasomatism of lithospheric mantle beneath Simao and western Yangtze block. Lithos, 2021, 400-401, 106354.	1.4	3
20	Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141–135 Ma ocean island within the Bangong–Nujiang Suture Zone, Tibetan Plateau. Bulletin of the Geological Society of America, 2021, 133, 1875-1889.	3.3	35
21	Identifying Crystal Accumulation in Granitoids through Amphibole Composition and <i>In Situ</i> Zircon O Isotopes in North Qilian Orogen. Journal of Petrology, 2021, 62, .	2.8	6
22	Tectonic significance of the Cretaceous granitoids along the southâ€east coast of continental China. Geological Journal, 2020, 55, 173-196.	1.3	2
23	Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 2020, 78, 41-57.	6.0	22
24	Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U–Pb geochronology, Hf isotope and geochemistry. Precambrian Research, 2020, 336, 105496.	2.7	21
25	Geochemistry and iron isotope systematics of coexisting Fe-bearing minerals in magmatic Fe Ti deposits: A case study of the Damiao titanomagnetite ore deposit, North China Craton. Gondwana Research, 2020, 81, 240-251.	6.0	10
26	A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collector inductively coupled plasma mass spectrometry. Acta Geochimica, 2020, 39, 355-364.	1.7	11
27	What drives the continued India-Asia convergence since the collision at 55ÂMa?. Science Bulletin, 2020, 65, 169-172.	9.0	10
28	Lithosphere thickness controls continental basalt compositions: An illustration using Cenozoic basalts from eastern China. Geology, 2020, 48, 128-133.	4.4	40
29	Large iron isotope variation in the eastern Pacific mantle as a consequence of ancient low-degree melt metasomatism. Geochimica Et Cosmochimica Acta, 2020, 286, 269-288.	3.9	27
30	Origin of magmatic harzburgite as a result of boninite magma evolution – An illustration using layered harzburgite-dunite cumulate from the Troodos ophiolite complex. Lithos, 2020, 376-377, 105764.	1.4	3
31	Mesozoic crustal evolution of southern Tibet: Constraints from the early Jurassic igneous rocks in the Central Lhasa terrane. Lithos, 2020, 366-367, 105557.	1.4	8
32	New U-Pb zircon age and petrogenesis of the plagiogranite, Troodos ophiolite, Cyprus. Lithos, 2020, 362-363, 105472.	1.4	11
33	Mineral Compositions of Syn-collisional Granitoids and their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 2020, 61, .	2.8	23
34	The Lithospheric Thickness Control on the Compositional Variation of Continental Intraplate Basalts: A Demonstration Using the Cenozoic Basalts and Clinopyroxene Megacrysts From Eastern China. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019315.	3.4	15
35	On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. Journal of Asian Earth Sciences, 2020, 194, 104367.	2.3	19
36	Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos, 2020, 364-365, 105513.	1.4	31

#	Article	IF	CITATIONS
37	Provenance, depositional setting, and crustal evolution of the Cathaysia Block, South China: Insights from detrital zircon U–Pb geochronology and geochemistry of clastic rocks. Geological Journal, 2019, 54, 897-912.	1.3	14
38	Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 2019, 12, 672-678.	12.9	29
39	Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nature Communications, 2019, 10, 4773.	12.8	63
40	lron isotope fractionation during mid-ocean ridge basalt (MORB) evolution: Evidence from lavas on the East Pacific Rise at 10°30′N and its implications. Geochimica Et Cosmochimica Acta, 2019, 267, 227-239.	3.9	36
41	The petrogenesis and tectonic significance of the Early Cretaceous intraplate granites in eastern China: The Laoshan granite as an example. Lithos, 2019, 328-329, 200-211.	1.4	16
42	Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling. Geochimica Et Cosmochimica Acta, 2019, 259, 17-36.	3.9	20
43	Petrogenesis of ODP Hole 735B (Leg 176) Oceanic Plagiogranite: Partial Melting of Gabbros or Advanced Extent of Fractional Crystallization?. Geochemistry, Geophysics, Geosystems, 2019, 20, 2717-2732.	2.5	27
44	Petrogenesis and tectonic implications of the Eocene-Oligocene potassic felsic suites in western Yunnan, eastern Tibetan Plateau: Evidence from petrology, zircon chronology, elemental and Sr-Nd-Pb-Hf isotopic geochemistry. Lithos, 2019, 340-341, 287-315.	1.4	17
45	The origin and geodynamic significance of the Mesozoic dykes in eastern continental China. Lithos, 2019, 332-333, 328-339.	1.4	20
46	Detrital zircon U–Pb geochronology and geochemistry of late Neoproterozoic – early Cambrian sedimentary rocks in the Cathaysia Block: constraint on its palaeo-position in Gondwana supercontinent. Geological Magazine, 2019, 156, 1587-1604.	1.5	8
47	The syncollisional granitoid magmatism and crust growth during the West Qinling Orogeny, China: Insights from the Jiaochangba pluton. Geological Journal, 2019, 54, 4014-4033.	1.3	6
48	Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks. International Geology Review, 2019, 61, 1768-1785.	2.1	29
49	Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW) Tj ETQq1 1	0,784314 2.8	rgBT /Ovel
50	Two epochs of eclogite metamorphism link â€~cold' oceanic subduction and â€~hot' continental subduction, the North Qaidam UHP belt, NW China. Geological Society Special Publication, 2019, 474, 275-289.	1.3	21
51	Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics – A petrological and geochemical perspective. Geoscience Frontiers, 2018, 9, 1265-1278.	8.4	36
52	Mesozoic high-Mg andesites from the Daohugou area, Inner Mongolia: Upper-crustal fractional crystallization of parental melt derived from metasomatized lithospheric mantle wedge. Lithos, 2018, 302-303, 535-548.	1.4	14
53	The evolution and ascent paths of mantle xenolith-bearing magma: Observations and insights from Cenozoic basalts in Southeast China. Lithos, 2018, 310-311, 171-181.	1.4	15
54	Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau. Lithos, 2018, 308-309, 53-64.	1.4	19

#	Article	IF	CITATIONS
55	Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Research, 2018, 309, 56-87.	2.7	123
56	The Early Cretaceous bimodal volcanic suite from the Yinshan Block, western North China Craton: Origin, process and geological significance. Journal of Asian Earth Sciences, 2018, 160, 348-364.	2.3	16
57	Petrogenesis of Cretaceous (133–84 Ma) intermediate dykes and host granites in southeastern China: Implications for lithospheric extension, continental crustal growth, and geodynamics of Palaeo-Pacific subduction. Lithos, 2018, 296-299, 195-211.	1.4	35
58	Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonics and Metallogeny, 2018, 10, 23-46.	0.9	99
59	Origin of the Jurassic-Cretaceous intraplate granitoids in Eastern China as a consequence of paleo-Pacific plate subduction. Lithos, 2018, 322, 405-419.	1.4	14
60	HP–UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 2018, 59, 2043-2060.	2.8	119
61	The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins. Earth-Science Reviews, 2018, 185, 301-307.	9.1	49
62	Geo-neutrino: Messenger from the Earth's interior. Chinese Science Bulletin, 2018, 63, 2853-2862.	0.7	0
63	Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS. Science Bulletin, 2017, 62, 277-289.	9.0	71
64	Effects of decarbonation on elemental behaviors during subduction-zone metamorphism: Evidence from a titanite-rich contact between eclogite-facies marble and omphacitite. Journal of Asian Earth Sciences, 2017, 135, 338-346.	2.3	2
65	Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 2017, 278-281, 477-490.	1.4	89
66	Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos, 2017, 282-283, 33-44.	1.4	90
67	Petrogenesis of Luchuba and Wuchaba granitoids in western Qinling: geochronological and geochemical evidence. Mineralogy and Petrology, 2017, 111, 887-908.	1.1	18
68	Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?. Lithos, 2017, 278-281, 97-110.	1.4	68
69	Different stages of chemical alteration on metabasaltic rocks in the subduction channel: Evidence from the Western Tianshan metamorphic belt, NW China. Journal of Asian Earth Sciences, 2017, 145, 111-122.	2.3	3
70	Slab breakoff: a causal mechanism or pure convenience?. Science Bulletin, 2017, 62, 456-461.	9.0	33
71	Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau. Lithos, 2017, 274-275, 31-38.	1.4	33
72	Elemental and Sr–Nd–Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes. Lithos, 2017, 272-273, 16-30.	1.4	37

#	Article	IF	CITATIONS
73	Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Science Bulletin, 2017, 62, 1464-1472.	9.0	21
74	Long-lived melting of ancient lower crust of the North China Craton in response to paleo-Pacific plate subduction, recorded by adakitic rhyolite. Lithos, 2017, 292-293, 437-451.	1.4	21
75	Qi-Qin Accretionary Belt in Central China Orogen: accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 2017, 62, 1035-1038.	9.0	95
76	Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 2017, 290-291, 94-103.	1.4	23
77	Petrogenesis of granitoids in the eastern section of the Central Qilian Block: Evidence from geochemistry and zircon U-Pb geochronology. Mineralogy and Petrology, 2017, 111, 23-41.	1.1	15
78	Hf isotope systematics of seamounts near the East Pacific Rise (EPR) and geodynamic implications. Lithos, 2016, 262, 107-119.	1.4	14
79	Origin of the Yellow Sea: an insight. Science Bulletin, 2016, 61, 1076-1080.	9.0	12
80	TTG and Potassic Granitoids in the Eastern North China Craton: Making Neoarchean Upper Continental Crust during Micro-continental Collision and Post-collisional Extension. Journal of Petrology, 2016, 57, 1775-1810.	2.8	40
81	Zircon U–Pb geochronology, Sr–Nd–Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen. Lithos, 2016, 260, 443-456.	1.4	23
82	Geochronology and geochemistry of Late Cretaceous–Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate. Lithos, 2016, 266-267, 202-212.	1.4	47
83	Testing the geologically testable hypothesis on subduction initiation. Science Bulletin, 2016, 61, 1231-1235.	9.0	20
84	An 850–820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China. Precambrian Research, 2016, 282, 52-73.	2.7	57
85	The Meaning of Global Ocean Ridge Basalt Major Element Compositions. Journal of Petrology, 2016, 57, 2081-2103.	2.8	29
86	Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust–mantle interaction. Lithos, 2016, 260, 300-314.	1.4	18
87	The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China – Evidence from geochronology and geochemistry of the Arkarz pluton. Lithos, 2016, 245, 191-204.	1.4	74
88	The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 2016, 240-243, 104-118.	1.4	60
89	Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochimica Et Cosmochimica Acta, 2016, 176, 44-80.	3.9	116
90	Is lunar magma ocean (LMO) gone with the wind?. National Science Review, 2016, 3, 12-15.	9.5	2

#	Article	IF	CITATIONS
91	Syn-collisional adakitic granodiorites formed by fractional crystallization: Insights from their enclosed mafic magmatic enclaves (MMEs) in the Qumushan pluton, North Qilian Orogen at the northern margin of the Tibetan Plateau. Lithos, 2016, 248-251, 455-468.	1.4	72
92	Geochemical behaviours of chemical elements during subduction-zone metamorphism and geodynamic significance. International Geology Review, 2016, 58, 1253-1277.	2.1	16
93	Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid–rock reactions in forearc mantle. Lithos, 2016, 252-253, 234-254.	1.4	44
94	Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: A long-lasting magmatism since continental collision through slab steepening. Lithos, 2016, 246-247, 99-109.	1.4	40
95	Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 2016, 245, 205-222.	1.4	88
96	Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 2015, 34, 2221-2248.	2.8	197
97	Magmatic record of India-Asia collision. Scientific Reports, 2015, 5, 14289.	3.3	316
98	Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Science China Earth Sciences, 2015, 58, 1284-1304.	5.2	97
99	Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos, 2015, 216-217, 196-210.	1.4	35
100	Trace element behavior and P–T–t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, 2015, 226, 65-80.	1.4	42
101	The terrestrial uranium isotope cycle. Nature, 2015, 517, 356-359.	27.8	142
102	Editor's note: how and where does continental crust form?. Science Bulletin, 2015, 60, 1139-1140.	9.0	2
103	Petrogenesis of the Chagangnuoer deposit, NW China: a general model for submarine volcanic-hosted skarn iron deposits. Science Bulletin, 2015, 60, 363-379.	9.0	15
104	On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China. Mineralogy and Petrology, 2015, 109, 577-596.	1.1	50
105	Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 2015, 60, 1598-1616.	9.0	128
106	ldentifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 2015, 430, 458-469.	4.4	82
107	Experimental demonstrations on the sources and conditions of mantle melting. Science Bulletin, 2015, 60, 1871-1872.	9.0	2
108	The 600–580Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana. Precambrian Research, 2015, 257, 47-64.	2.7	79

#	Article	IF	CITATIONS
109	Late Triassic adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 2015, 212-215, 353-367.	1.4	27
110	Mesozoic–Cenozoic mantle evolution beneath the North China Craton: A new perspective from Hf–Nd isotopes of basalts. Gondwana Research, 2015, 27, 1574-1585.	6.0	54
111	The nature and history of the Qilian Block in the context of the development of the Greater Tibetan Plateau. Gondwana Research, 2015, 28, 209-224.	6.0	104
112	Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology, 2014, 42, 43-46.	4.4	85
113	Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica Et Cosmochimica Acta, 2014, 132, 311-336.	3.9	126
114	A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context. Journal of Asian Earth Sciences, 2014, 79, 86-96.	2.3	17
115	Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India–Asia collision and convergence. Geochimica Et Cosmochimica Acta, 2014, 143, 207-231.	3.9	187
116	Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica Et Cosmochimica Acta, 2014, 130, 42-62.	3.9	112
117	Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 2014, 129, 59-84.	9.1	345
118	Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 2014, 365, 54-68.	3.3	21
119	Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 2014, 210-211, 181-198.	1.4	79
120	Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 2014, 370, 1-18.	3.3	188
121	Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos, 2014, 202-203, 37-54.	1.4	69
122	Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contributions To Mineralogy and Petrology, 2013, 165, 437-455.	3.1	77
123	Tectonics of the North Qilian orogen, NW China. Gondwana Research, 2013, 23, 1378-1401.	6.0	534
124	Continental collision zones are primary sites for net continental crust growth — A testable hypothesis. Earth-Science Reviews, 2013, 127, 96-110.	9.1	245
125	The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 2013, 23, 1429-1454.	6.0	1,045
126	The stable vanadium isotope composition of the mantle and mafic lavas. Earth and Planetary Science Letters, 2013, 365, 177-189.	4.4	68

#	Article	IF	CITATIONS
127	Elemental responses to subduction-zone metamorphism: Constraints from the North Qilian Mountain, NW China. Lithos, 2013, 160-161, 55-67.	1.4	48
128	Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 2012, 220-221, 9-22.	2.7	190
129	Tholeiite–Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development. Chemical Geology, 2012, 328, 259-277.	3.3	136
130	Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 2012, 328, 290-308.	3.3	288
131	Geochemical perspectives on mantle dynamics and plate interactions in Asia — A special issue in honor/memory of Dr. Shen-su Sun. Chemical Geology, 2012, 328, 1-4.	3.3	0
132	Trace-element transport during subduction-zone ultrahigh-pressure metamorphism: Evidence from western Tianshan, China. Bulletin of the Geological Society of America, 2012, 124, 1113-1129.	3.3	42
133	Earth processes cause Zr–Hf and Nb–Ta fractionations, but why and how?. RSC Advances, 2012, 2, 3587.	3.6	27
134	A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes, 2012, 35, 310-327.	1.2	68
135	U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30′N, 10°30′N, and 11°20′N. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	45
136	The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301, 241-255.	4.4	1,096
137	The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. Journal of Petrology, 2011, 52, 1443-1468.	2.8	208
138	Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China. Journal of Metamorphic Geology, 2011, 29, 699-720.	3.4	51
139	Delamination and ultra-deep subduction of continental crust: constraints from elastic wave velocity and density measurement in ultrahigh-pressure metamorphic rocks. Journal of Metamorphic Geology, 2011, 29, 781-801.	3.4	19
140	On the enigma of Nb-Ta and Zr-Hf fractionation—A critical review. Journal of Earth Science (Wuhan,) Tj ETQq0 0	0 ₃ rgBT /O	verlock 10 1 32
141	Lhasa terrane in southern Tibet came from Australia. Geology, 2011, 39, 727-730.	4.4	430
142	Magma generation and evolution and global tectonics: An issue in honour of Peter J. Wyllie for his life-long contributions by means of experimental petrology to understanding how the Earth works: Foreword. Journal of Petrology, 2011, 52, 1239-1242.	2.8	1
143	Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China. Lithos, 2010, 119, 621-641.	1.4	221

144Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern
Indochina continentâ€"An eastern extension of the Lhasa Block. Lithos, 2010, 120, 327-346.1.4172

#	Article	IF	CITATIONS
145	Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. Bulletin of the Geological Society of America, 2010, 122, 979-993.	3.3	167
146	Mineralogical and Geochemical Constraints on the Petrogenesis of Post-collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China. Journal of Petrology, 2010, 51, 1617-1654.	2.8	120
147	UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. European Journal of Mineralogy, 2010, 21, 1287-1300.	1.3	82
148	40Ar/39Ar geochronology of post-collisional volcanism in the middle Gangdese Belt, southern Tibet. Journal of Asian Earth Sciences, 2010, 37, 246-258.	2.3	16
149	Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: Implications for late Archean crustal accretion. Precambrian Research, 2010, 182, 43-56.	2.7	170
150	Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Research, 2010, 183, 805-816.	2.7	193
151	The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 2009, 37, 583-586.	4.4	219
152	Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: A case study using data from ODP Hole 735B. Journal of Volcanology and Geothermal Research, 2009, 184, 313-322.	2.1	19
153	Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S. Lithos, 2009, 112, 57-72.	1.4	58
154	MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 2009, 112, 1-17.	1.4	167
155	Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 2009, 113, 190-212.	1.4	388
156	On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 2009, 112, 118-136.	1.4	154
157	Recent developments on seafloor petrology and tectonics: A volume in honour of Roger Hekinian for his life-long contributions to marine petrology and tectonics reseach. Lithos, 2009, 112, vii-ix.	1.4	0
158	Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China Series D: Earth Sciences, 2009, 52, 1223-1239.	0.9	135
159	Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Science Bulletin, 2009, 54, 4148-4160.	1.7	67
160	Mantle input to the crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf isotopic evidence. Journal of Earth Science (Wuhan, China), 2009, 20, 241-249.	3.2	61
161	The Luliangshan garnet peridotite massif of the North Qaidam UHPM belt, NW China ―a review of its origin and metamorphic evolution. Journal of Metamorphic Geology, 2009, 27, 621-638.	3.4	43
162	Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009, 268, 298-312.	3.3	367

#	Article	IF	CITATIONS
163	CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochimica Et Cosmochimica Acta, 2009, 73, 1737-1754.	3.9	125
164	Zircon U–Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 2009, 469, 48-60.	2.2	138
165	Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: New perspectives. Journal of Asian Earth Sciences, 2009, 35, 334-353.	2.3	130
166	Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: A review. Journal of Asian Earth Sciences, 2009, 35, 285-297.	2.3	46
167	UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 2009, 35, 310-322.	2.3	98
168	The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 2008, 104, 99-118.	1.4	177
169	Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 2008, 250, 49-67.	3.3	570
170	Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective. Journal of Petrology, 2008, 49, 633-664.	2.8	178
171	The Origin of Alkaline Lavas. Science, 2008, 320, 883-884.	12.6	71
172	Whole-rock elemental and zircon Hf isotopic geochemistry of mafic and ultramafic rocks from the Early Cretaceous Comei large igneous province in SE Tibet: constraints on mantle source characteristics and petrogenesis. Himalayan Journal of Sciences, 2008, 5, 178-180.	0.3	9
173	The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 2007, 262, 563-580.	4.4	192
174	Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	571
175	Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology, 2007, 25, 547-563.	3.4	150
176	A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96, 22-35.	1.4	171
177	Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos, 2007, 96, 243-265.	1.4	71
178	Petrology and geochronology of Xuejiashiliang igneous complex and their genetic link to the lithospheric thinning during the Yanshanian orogenesis in eastern China. Lithos, 2007, 96, 90-107.	1.4	18
179	Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96, 225-242.	1.4	538
180	Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China. Lithos, 2007, 96, 55-66.	1.4	40

#	Article	IF	CITATIONS
181	The origin, evolution and present state of continental lithosphere. Lithos, 2007, 96, ix-x.	1.4	2
182	Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 2006, 443, 565-568.	27.8	192
183	Evolution from Oceanic Subduction to Continental Collision: a Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 2006, 47, 435-455.	2.8	379
184	Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 2006, 29, 26-33.	1.2	1,379
185	Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. American Mineralogist, 2005, 90, 814-820.	1.9	88
186	Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 2005, 234, 99-118.	4.4	261
187	On the great plume debate. Science Bulletin, 2005, 50, 1537.	1.7	14
188	Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges. Journal of Petrology, 2004, 45, 2423-2458.	2.8	629
189	Foreword: Magma generation and evolution in the Earth. Journal of Petrology, 2004, 45, 2347-2348.	2.8	Ο
190	Zircon U-Pb SHRIMP ages of eclogites from the North Qilian Mountains in NW China and their tectonic implication. Science Bulletin, 2004, 49, 848-852.	1.7	98
191	Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American Mineralogist, 2004, 89, 1330-1336.	1.9	186
192	Zircon U-Pb SHRIMP ages of eclogites from the North Qilian Mountains in NW China and their tectonic implication. Science Bulletin, 2004, 49, 848.	1.7	8
193	Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 2003, 108, .	3.3	304
194	Late Palaeozoic Ultramafic Lavas in Yunnan, SW China, and their Geodynamic Significance. Journal of Petrology, 2003, 44, 141-158.	2.8	38
195	Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: a Petrological Perspective. Journal of Petrology, 2003, 44, 851-866.	2.8	201
196	Constraints on Melt Movement Beneath the East Pacific Rise From 230Th-238U Disequilibrium. Science, 2002, 295, 107-110.	12.6	36
197	Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15°45′N. Geology, 2002, 30, 879.	4.4	188
198	Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 2002, 199, 327-345.	4.4	230

#	Article	IF	CITATIONS
199	The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochimica Et Cosmochimica Acta, 2001, 65, 3267-3287.	3.9	159
200	Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33–35°N. Earth and Planetary Science Letters, 2001, 186, 383-399.	4.4	89
201	Early Permian supraâ€subduction assemblage of the South Island terrane, Percy Isles, New England Fold Belt, Queensland. Australian Journal of Earth Sciences, 2000, 47, 1077-1085.	1.0	9
202	Petrological, geochemical and geochronological evidence for a Neoproterozoic ocean basin recorded in the Marlborough terrane of the northern New England Fold Belt. Australian Journal of Earth Sciences, 2000, 47, 1053-1064.	1.0	41
203	Evidence for Palaeozoic magmatism recorded in the Late Neoproterozoic Marlborough ophiolite, New England Fold Belt, central Queensland. Australian Journal of Earth Sciences, 2000, 47, 1065-1076.	1.0	19
204	A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 2000, 179, 31-51.	4.4	456
205	Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30′N since 800 ka. Earth and Planetary Science Letters, 1999, 168, 45-63.	4.4	144
206	Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth and Planetary Science Letters, 1999, 173, 271-284.	4.4	109
207	Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. Journal of Geophysical Research, 1999, 104, 7067-7087.	3.3	220
208	Comments on Some Misconceptions in Igneous and Experimental Petrology and Methodology: a Reply. Journal of Petrology, 1999, 40, 1195-1203.	2.8	1
209	Sr, Nd and Pb isotopic variation along the Pacific–Antarctic risecrest, 53–57°S: Implications for the composition and dynamics of the South Pacific upper mantle. Earth and Planetary Science Letters, 1998, 154, 109-125.	4.4	66
210	Erratum to "Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle― Earth and Planetary Science Letters, 1998, 155, 147.	4.4	2
211	Geochemical Evolution within the Tonga-Kermadec-Lau Arc-Back-arc Systems: the Role of Varying Mantle Wedge Composition in Space and Time. Journal of Petrology, 1998, 39, 331-368.	2.8	48
212	Mantle Melting and Melt Extraction Processes beneath Ocean Ridges: Evidence from Abyssal Peridotites. Journal of Petrology, 1997, 38, 1047-1074.	2.8	466
213	Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges. Earth and Planetary Science Letters, 1997, 146, 243-258.	4.4	179
214	Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 1997, 148, 471-483.	4.4	369
215	The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 1997, 152, 251-265.	4.4	185
216	Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature, 1997, 385, 326-329.	27.8	202

#	Article	IF	CITATIONS
217	Mantle Melting and Melt Extraction Processes beneath Ocean Ridges: Evidence from Abyssal Peridotites. Journal of Petrology, 1997, 38, 1047-1074.	2.8	73
218	Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°-19°S. Journal of Geophysical Research, 1996, 101, 27711-27733.	3.3	154
219	Magmatism in the Garrett transform fault (East Pacific Rise near 13°27′S). Journal of Geophysical Research, 1995, 100, 10163-10185.	3.3	57
220	Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic Ridge. Journal of Geophysical Research, 1994, 99, 19719-19740.	3.3	72
221	Chemical variation trends at fast and slow spreading midâ€ocean ridges. Journal of Geophysical Research, 1993, 98, 7887-7902.	3.3	93
222	Petrology and magma chamber processes at the East Pacific Rise â^¼ 9°30′N. Journal of Geophysical Research, 1992, 97, 6779-6797.	3.3	143
223	MORBCAL: a program for calculating the compositions of primary basaltic melts produced by decompression-induced melting below mid-ocean ridges. Computers and Geosciences, 1992, 18, 1277-1282.	4.2	2
224	An empirical method for calculating melt compositions produced beneath midâ€ocean ridges: Application for axis and offâ€axis (seamounts) melting. Journal of Geophysical Research, 1991, 96, 21753-21777.	3.3	224
225	In Situ Densities of Morb Melts and Residual Mantle: Implications for Buoyancy Forces beneath Mid-Ocean Ridges. Journal of Geology, 1991, 99, 767-775.	1.4	65
226	DENSCAL: Program for calculating densities of silicate melts and mantle minerals as a function of pressure, temperature, and composition in melting range. Computers and Geosciences, 1991, 17, 679-687.	4.2	40
227	Hydrothermal alteration of mafic metavolcanic rocks and genesis of Fe-Zn-Cu sulfide deposits, Stone Hill District, Alabama. Economic Geology, 1991, 86, 983-1001.	3.8	11
228	Chemistry of seamounts near the East Pacific Rise: Implications for the geometry of subaxial mantle flow. Geology, 1990, 18, 1122.	4.4	58
229	Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan Plateau. Geology, 0, , .	4.4	4
230	Obvious problems in lunar petrogenesis and new perspectives. Special Paper of the Geological Society of America, 0, , 339-366.	0.5	3
231	Chemical variations of loess from the Chinese Loess Plateau and its implications. International Geology Review, 0, , 1-16.	2.1	0