
Scott D Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214933/publications.pdf Version: 2024-02-01

SCOTT D ΤΛΥΙ ΟΡ

#	Article	IF	CITATIONS
1	The action mechanism of daptomycin. Bioorganic and Medicinal Chemistry, 2016, 24, 6253-6268.	3.0	203
2	Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry, 2014, 289, 11584-11591.	3.4	136
3	Recent advances in protein tyrosine phosphatase 1B inhibitors. Expert Opinion on Investigational Drugs, 2004, 13, 199-214.	4.1	80
4	Characterization of daptomycin oligomerization with perylene excimer fluorescence: Stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 673-678.	2.6	66
5	Solid-Phase Total Synthesis of Daptomycin and Analogs. Organic Letters, 2015, 17, 748-751.	4.6	55
6	On the origins of enhanced reactivity of five-membered cyclic phosphate esters. The relative contributions of enthalpic and entropic factors. Journal of the American Chemical Society, 1990, 112, 6669-6671.	13.7	51
7	Synthesis of α-Fluorosulfonamides by Electrophilic Fluorination. Organic Letters, 2004, 6, 4285-4288.	4.6	50
8	Boronic acids as inhibitors of steroid sulfatase. Bioorganic and Medicinal Chemistry, 2006, 14, 8564-8573.	3.0	42
9	Multiple Pathways for the Irreversible Inhibition of Steroid Sulfatase with Quinone Methideâ€Generating Suicide Inhibitors. ChemBioChem, 2009, 10, 1457-1461.	2.6	37
10	Increased Electromer Formation and Charge Trapping in Solution-Processed versus Vacuum-Deposited Small Molecule Host Materials of Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40564-40572.	8.0	34
11	Synthesis of Nucleoside Tetraphosphates and Dinucleoside Pentaphosphates via Activation of Cyclic Trimetaphosphate. Organic Letters, 2013, 15, 2612-2615.	4.6	33
12	The difluoromethylene group as a replacement for the labile oxygen in steroid sulfates: a new approach to steroid sulfatase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 151-155.	2.2	29
13	Synthesis of Protectedl-4-[Sulfono(difluoromethyl)]phenylalanine and Its Incorporation into a Peptide. Organic Letters, 2001, 3, 1571-1574.	4.6	28
14	Steroid derivatives as inhibitors of steroid sulfatase. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 183-198.	2.5	28
15	Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1999-2005.	2.6	27
16	Mechanistic studies on the effect of membrane lipid acyl chain composition on daptomycin pore formation. Chemistry and Physics of Lipids, 2018, 216, 73-79.	3.2	27
17	Bismethylene Triphosphate Nucleotides of Uridine 4-Phosphate Analogues:  A New Class of Anionic Pyrimidine Nucleotide Analogues. Journal of Organic Chemistry, 2008, 73, 1403-1412.	3.2	25
18	Inhibition of steroid sulfatase with 4-substituted estrone and estradiol derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 5999-6005.	3.0	25

SCOTT D TAYLOR

#	Article	IF	CITATIONS
19	Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 302-308.	2.6	24
20	Preparation of chiral α-monofluoroalkylphosphonic acids and their evaluation as inhibitors of protein tyrosine phosphatase 1B. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1271-1281.	1.3	22
21	A fluorogenic substrate for the continuous assaying of aryl sulfatases. Analytical Biochemistry, 2005, 340, 80-88.	2.4	22
22	Synthesis of a non-hydrolyzable estrone sulfate analogue bearing the difluoromethanesulfonamide group and its evaluation as a steroid sulfatase inhibitor. Organic and Biomolecular Chemistry, 2005, 3, 3329.	2.8	22
23	Synthesis of Nucleoside Triphosphates from 2′-3′-Protected Nucleosides Using Trimetaphosphate. Organic Letters, 2016, 18, 580-583.	4.6	22
24	An Unsymmetrical Approach to the Synthesis of Bismethylene Triphosphate Analogues. Organic Letters, 2006, 8, 4243-4246.	4.6	21
25	Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophysical Journal, 2016, 111, 1267-1277.	0.5	20
26	Exploring the Potent Inhibition of CTP Synthase by Gemcitabineâ€5′â€ᠯriphosphate. ChemBioChem, 2016, 17, 2240-2249.	2.6	19
27	Daptomycin Pore Formation Is Restricted by Lipid Acyl Chain Composition. ACS Infectious Diseases, 2017, 3, 797-801.	3.8	19
28	Synthesis of Methylene- and Difluoromethylenephosphonate Analogues of Uridine-4-phosphate and 3-Deazauridine-4-phosphate. Journal of Organic Chemistry, 2006, 71, 9420-9430.	3.2	18
29	Synthesis of 4-Formyl Estrone Using a Positional Protecting Group and Its Conversion to Other C-4-Substituted Estrogens. Journal of Organic Chemistry, 2007, 72, 8824-8830.	3.2	18
30	Solid-phase synthesis and in vitro biological activity of a Thr4→Ser4 analog of daptomycin. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5490-5494.	2.2	17
31	An entirely fmoc solid phase approach to the synthesis of daptomycin analogs. Peptide Science, 2019, 111, e23094.	1.8	17
32	Synthesis of α-Fluorosulfonate and α-Fluorosulfonamide Analogues of a Sulfated Carbohydrate. Organic Letters, 2006, 8, 5617-5620.	4.6	16
33	A Fresh Look at the Staudinger Reaction on Azido Esters: Formation of 2 <i>H</i> -1,2,3-Triazol-4-ols from α-Azido Esters Using Trialkyl Phosphines. Organic Letters, 2016, 18, 4412-4415.	4.6	16
34	The effect of replacing the ester bond with an amide bond and of overall stereochemistry on the activity of daptomycin. Bioorganic and Medicinal Chemistry, 2019, 27, 240-246.	3.0	15
35	17β-Arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol as highly potent inhibitors of steroid sulfatase. Bioorganic and Medicinal Chemistry, 2012, 20, 1535-1544.	3.0	14
36	α-Azido Acids in Solid-Phase Peptide Synthesis: Compatibility with Fmoc Chemistry and an Alternative Approach to the Solid Phase Synthesis of Daptomycin Analogs. Journal of Organic Chemistry, 2016, 81, 2624-2628.	3.2	14

SCOTT D TAYLOR

#	Article	IF	CITATIONS
37	Efficient syntheses of 17-β-amino steroids. Steroids, 2011, 76, 1098-1102.	1.8	13
38	Total Synthesis of A54145 Factor D. Journal of Organic Chemistry, 2019, 84, 12021-12030.	3.2	13
39	A high-yielding solid-phase total synthesis of daptomycin using a Fmoc SPPS stable kynurenine synthon. Organic and Biomolecular Chemistry, 2021, 19, 3144-3153.	2.8	13
40	Asymmetric Synthesis of Fmoc-Protected β-Hydroxy and β-Methoxy Amino Acids via a Sharpless Aminohydroxylation Reaction Using FmocNHCl. Organic Letters, 2018, 20, 7717-7720.	4.6	11
41	Thermoresponsive hydroxybutylated starch nanoparticles. Carbohydrate Polymers, 2019, 209, 145-151.	10.2	11
42	The Chiral Target of Daptomycin Is the 2 <i>R</i> ,2′ <i>S</i> Stereoisomer of Phosphatidylglycerol. Angewandte Chemie - International Edition, 2022, 61, e202114858.	13.8	11
43	α-Azido Esters in Depsipeptide Synthesis: C–O Bond Cleavage during Azido Group Reduction. Journal of Organic Chemistry, 2016, 81, 11831-11840.	3.2	9
44	Total Synthesis of Paenibacterin and Its Analogues. Journal of Organic Chemistry, 2019, 84, 5339-5347.	3.2	9
45	A-ring substituted 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol as highly potent reversible inhibitors of steroid sulfatase. Bioorganic and Medicinal Chemistry, 2015, 23, 5681-5692.	3.0	8
46	Discovery of 5-aryl-3-thiophen-2-yl-1H-pyrazoles as a new class of Hsp90 inhibitors in hepatocellular carcinoma. Bioorganic Chemistry, 2020, 94, 103433.	4.1	8
47	Highly efficient and enantioselective syntheses of (2S,3R)-3-alkyl- and alkenylglutamates from Fmoc-protected Garner's aldehyde. Amino Acids, 2020, 52, 987-998.	2.7	8
48	Antibody-catalyzed activation of a model tripartate prodrug by a tandem hydrolysis–1,6-elimination reaction. Chemical Communications, 2001, , 1386-1387.	4.1	7
49	Ground State, Intermediate, and Multivalent Nucleotide Analogue Inhibitors of Cytidine 5′â€īriphosphate Synthase. ChemMedChem, 2008, 3, 1853-1857.	3.2	7
50	Total Synthesis of Analogs of A54145D and A54145A1 for Structure–Activity Relationship Studies. Journal of Organic Chemistry, 2020, 85, 2213-2219.	3.2	7
51	Thermoresponsive Starch for the Flocculation of Oil Sands Mature Fine Tailings. Environmental Science & Technology, 2020, 54, 13981-13991.	10.0	7
52	One flask synthesis of 2′,3′-cyclic nucleoside monophosphates from unprotected nucleosides using activated cyclic trimetaphosphate. Tetrahedron Letters, 2016, 57, 5457-5459.	1.4	6
53	Solid-Phase Total Synthesis of Dehydrotryptophan-Bearing Cyclic Peptides Tunicyclin B, Sclerotide A, CDA3a, and CDA4a using a Protected β-Hydroxytryptophan Building Block. Organic Letters, 2021, 23, 3048-3052.	4.6	6
54	An Acyl-Linked Dimer of Daptomycin Is Strongly Inhibited by the Bacterial Cell Wall. ACS Infectious Diseases, 2017, 3, 462-466.	3.8	5

#	Article	IF	CITATIONS
55	Synthesis of β-Ketosulfonamides Derived from Amino Acids and Their Conversion to β-Keto-α,α-difluorosulfonamides via Electrophilic Fluorination. Journal of Organic Chemistry, 2017, 82, 11157-11165.	3.2	5
56	Efficient One-Pot, Two-Component Modular Synthesis of 3,5-Disubstituted Pyrazoles. ACS Omega, 2018, 3, 15566-15574.	3.5	4
57	Synthesis of Fmoc-Protected Amino Alcohols via the Sharpless Asymmetric Aminohydroxylation Reaction Using FmocNHCl as the Nitrogen Source. Journal of Organic Chemistry, 2019, 84, 15476-15485.	3.2	4
58	Discovery of Highly Active Derivatives of Daptomycin by Assessing the Effect of Amino Acid Substitutions at Positions 8 and 11 on a Daptomycin Analogue. ACS Infectious Diseases, 2022, 8, 778-789.	3.8	4
59	Mild, Rapid, and Chemoselective Procedure for the Introduction of the 9-Phenyl-9-fluorenyl Protecting Group into Amines, Acids, Alcohols, Sulfonamides, Amides, and Thiols. Journal of Organic Chemistry, 2020, 85, 2068-2081.	3.2	3
60	Synthesis of Nucleosideâ€5′â€ <i>O</i> â€Tetraphosphates from Activated Trimetaphosphate and Nucleosideâ€5′â€ <i>O</i> â€Monophosphates. Current Protocols in Nucleic Acid Chemistry, 2018, 75, e62.	0.5	2
61	Synthesis of Azido Acids and Their Application in the Preparation of Complex Peptides. Synthesis, 2021, 53, 391-417.	2.3	1
62	Nonthermoresponsive and Thermoresponsive Cationic Starch for the Flocculation of Oil Sands Mature Fine Tailings. Energy & Fuels, 2021, 35, 5163-5171.	5.1	1
63	Enantioselective Synthesis and Application of Small and Environmentally Sensitive Fluorescent Amino Acids for Probing Biological Interactions. Journal of Organic Chemistry, 2021, 86, 11407-11418.	3.2	1
64	Synthesis of β-Hydroxy-α,α-difluorosulfonamides from Carbanions of Difluoromethanesulfonamides. Journal of Organic Chemistry, 2021, 86, 6577-6591.	3.2	0
65	The Chiral Target of Daptomycin is the 2R,2'S Stereoisomer of Phosphatidylglycerol. Angewandte Chemie, 0, , .	2.0	0