Peter W Kalivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148928/publications.pdf

Version: 2024-02-01

156 156 156 11797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Neural Basis of Addiction: A Pathology of Motivation and Choice. American Journal of Psychiatry, 2005, 162, 1403-1413.	7.2	2,651
2	Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research Reviews, 1991, 16, 223-244.	9.0	1,937
3	The glutamate homeostasis hypothesis of addiction. Nature Reviews Neuroscience, 2009, 10, 561-572.	10.2	1,373
4	Drug Addiction as a Pathology of Staged Neuroplasticity. Neuropsychopharmacology, 2008, 33, 166-180.	5.4	902
5	Prefrontal Glutamate Release into the Core of the Nucleus Accumbens Mediates Cocaine-Induced Reinstatement of Drug-Seeking Behavior. Journal of Neuroscience, 2003, 23, 3531-3537.	3.6	834
6	The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior. Journal of Neuroscience, 2001, 21, 8655-8663.	3.6	795
7	Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nature Neuroscience, 2003, 6, 743-749.	14.8	659
8	Extinction circuits for fear and addiction overlap in prefrontal cortex. Learning and Memory, 2009, 16, 279-288.	1.3	639
9	Drug Wanting: Behavioral Sensitization and Relapse to Drug-Seeking Behavior. Pharmacological Reviews, 2011, 63, 348-365.	16.0	580
10	Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology, 2003, 168, 44-56.	3.1	559
11	Limbic and Motor Circuitry Underlying Footshock-Induced Reinstatement of Cocaine-Seeking Behavior. Journal of Neuroscience, 2004, 24, 1551-1560.	3.6	468
12	Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. Journal of Neuroscience, 2008, 28, 6046-6053.	3.6	465
13	Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience, 2015, 18, 1230-1232.	14.8	372
14	N-Acetylcysteine reverses cocaine-induced metaplasticity. Nature Neuroscience, 2009, 12, 182-189.	14.8	362
15	Ceftriaxone Restores Glutamate Homeostasis and Prevents Relapse to Cocaine Seeking. Biological Psychiatry, 2010, 67, 81-84.	1.3	351
16	Glutamate transmission in addiction. Neuropharmacology, 2009, 56, 169-173.	4.1	340
17	Glutamate Release in the Nucleus Accumbens Core Is Necessary for Heroin Seeking. Journal of Neuroscience, 2008, 28, 3170-3177.	3.6	318
18	Glutamate systems in cocaine addiction. Current Opinion in Pharmacology, 2004, 4, 23-29.	3.5	306

#	Article	IF	CITATIONS
19	Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily) Tj ETQq1	1.0.7843 4.2	14 rgBT /0 234
20	The Role of Cystine-Glutamate Exchange in Nicotine Dependence in Rats and Humans. Biological Psychiatry, 2009, 65, 841-845.	1.3	233
21	Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9124-9129.	7.1	210
22	Optogenetic inhibition of cocaine seeking in rats. Addiction Biology, 2013, 18, 50-53.	2.6	208
23	N-Acetylcysteine Reduces Extinction Responding and Induces Enduring Reductions in Cue- and Heroin-Induced Drug-Seeking. Biological Psychiatry, 2008, 63, 338-340.	1.3	207
24	Altered Dendritic Spine Plasticity in Cocaine-Withdrawn Rats. Journal of Neuroscience, 2009, 29, 2876-2884.	3.6	192
25	Is Cocaine Desire Reduced by <i>N</i> -Acetylcysteine?. American Journal of Psychiatry, 2007, 164, 1115-1117.	7.2	187
26	Extinction Training after Cocaine Self-Administration Induces Glutamatergic Plasticity to Inhibit Cocaine Seeking. Journal of Neuroscience, 2010, 30, 7984-7992.	3.6	187
27	Relapse Induced by Cues Predicting Cocaine Depends on Rapid, Transient Synaptic Potentiation. Neuron, 2013, 77, 867-872.	8.1	186
28	The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology, 2006, 186, 143-149.	3.1	177
29	Using glutamate homeostasis as a target for treating addictive disorders. Behavioural Pharmacology, 2010, 21, 514-522.	1.7	177
30	Potential Role of N-Acetylcysteine in the Management of Substance Use Disorders. CNS Drugs, 2014, 28, 95-106.	5.9	159
31	Astrocytic Dysfunction and Addiction. Neuroscientist, 2014, 20, 610-622.	3.5	158
32	Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Biological Psychiatry, 2015, 78, 441-451.	1.3	156
33	The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learning and Memory, 2010, 17, 168-175.	1.3	155
34	Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19407-19412.	7.1	154
35	Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 385-390.	7.1	154
36	Extracellular Glutamate: Functional Compartments Operate in Different Concentration Ranges. Frontiers in Systems Neuroscience, 2011, 5, 94.	2.5	150

#	Article	IF	Citations
37	Glutamate transporter <scp>GLT </scp> â€1 mediates <scp>N </scp> â€acetylcysteine inhibition of cocaine reinstatement. Addiction Biology, 2015, 20, 316-323.	2.6	149
38	Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse. Journal of Neuroscience, 2014, 34, 5649-5657.	3.6	141
39	Cocaine-Induced Reinstatement Requires Endogenous Stimulation of Â-Opioid Receptors in the Ventral Pallidum. Journal of Neuroscience, 2005, 25, 4512-4520.	3.6	137
40	Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotoxicity Research, 2008, 14, 185-189.	2.7	137
41	Context-specific Enhancement of Glutamate Transmission by Cocaine. Neuropsychopharmacology, 2000, 23, 335-344.	5 . 4	133
42	Cocaine Increases Actin Cycling: Effects in the Reinstatement Model of Drug Seeking. Journal of Neuroscience, 2006, 26, 1579-1587.	3.6	133
43	Cocaine Self-Administration and Extinction Leads to Reduced Glial Fibrillary Acidic Protein Expression and Morphometric Features of Astrocytes in the Nucleus Accumbens Core. Biological Psychiatry, 2016, 80, 207-215.	1.3	133
44	Neural circuit competition in cocaineâ€seeking: roles of the infralimbic cortex and nucleus accumbens shell. European Journal of Neuroscience, 2012, 35, 614-622.	2.6	128
45	Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. European Journal of Pharmacology, 2010, 639, 115-122.	3.5	125
46	Rapid, transient synaptic plasticity in addiction. Neuropharmacology, 2014, 76, 276-286.	4.1	124
47	Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. Nature Neuroscience, 2014, 17, 1655-1657.	14.8	121
48	The Effect of N-Acetylcysteine in the Nucleus Accumbens on Neurotransmission and Relapse to Cocaine. Biological Psychiatry, 2012, 71, 978-986.	1.3	117
49	Animal Models and Brain Circuits in Drug Addiction. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 339-344.	3.4	117
50	Loss of Plasticity in the D2-Accumbens Pallidal Pathway Promotes Cocaine Seeking. Journal of Neuroscience, 2017, 37, 757-767.	3.6	109
51	Glutamate Transporter GLT-1 as a Therapeutic Target for Substance Use Disorders. CNS and Neurological Disorders - Drug Targets, 2015, 14, 745-756.	1.4	108
52	Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Frontiers in Behavioral Neuroscience, 2013, 7, 213.	2.0	107
53	Optogenetic Evidence That Pallidal Projections, Not Nigral Projections, from the Nucleus Accumbens Core Are Necessary for Reinstating Cocaine Seeking. Journal of Neuroscience, 2013, 33, 13654-13662.	3.6	106
54	Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking. Journal of Neuroscience, 2016, 36, 10174-10180.	3.6	103

#	Article	IF	CITATIONS
55	Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior. Brain Structure and Function, 2016, 221, 1681-1689.	2.3	103
56	Involvement of the Pallidal-thalamocortical Circuit in Adaptive Behavior. Annals of the New York Academy of Sciences, 1999, 877, 64-70.	3.8	102
57	Cocaine Sensitization and Craving. Journal of Addictive Diseases, 2001, 20, 43-54.	1.3	102
58	Glutamate Transmission and Addiction to Cocaine. Annals of the New York Academy of Sciences, 2003, 1003, 169-175.	3.8	102
59	Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. Dialogues in Clinical Neuroscience, 2007, 9, 389-397.	3.7	99
60	Understanding Addiction Using Animal Models. Frontiers in Behavioral Neuroscience, 2019, 13, 262.	2.0	98
61	HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors. Neuron, 2017, 96, 130-144.e6.	8.1	88
62	Ventral Pallidum Is the Primary Target for Accumbens D1 Projections Driving Cocaine Seeking. Journal of Neuroscience, 2019, 39, 2041-2051.	3.6	81
63	Accumbens nNOS Interneurons Regulate Cocaine Relapse. Journal of Neuroscience, 2017, 37, 742-756.	3 . 6	80
64	Metabotropic glutamatergic receptors and their ligands in drug addiction., 2014, 142, 281-305.		74
65	Exciting inhibition in psychostimulant addiction. Trends in Neurosciences, 2006, 29, 610-616.	8.6	70
66	Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Structure and Function, 2008, 213, 149-157.	2.3	70
67	A Model of Δ9-Tetrahydrocannabinol Self-administration and Reinstatement That Alters Synaptic Plasticity in Nucleus Accumbens. Biological Psychiatry, 2018, 84, 601-610.	1.3	68
68	A Double-Blind, Randomized, Controlled Pilot Trial of N -Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders. Journal of Clinical Psychiatry, 2016, 77, e1439-e1446.	2.2	66
69	The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Research, 2015, 1628, 29-39.	2.2	64
70	Prelimbic Cortex and Ventral Tegmental Area Modulate Synaptic Plasticity Differentially in Nucleus Accumbens During Cocaine-Reinstated Drug Seeking. Neuropsychopharmacology, 2014, 39, 1169-1177.	5 . 4	61
71	Signals from the Fourth Dimension Regulate Drug Relapse. Trends in Neurosciences, 2016, 39, 472-485.	8.6	60
72	Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. Progress in Brain Research, 2017, 235, 93-112.	1.4	59

#	Article	IF	CITATIONS
73	How do we determine which drug-induced neuroplastic changes are important?. Nature Neuroscience, 2005, 8, 1440-1441.	14.8	58
74	Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the Ventral Pallidum. Cell Reports, 2020, 30, 2018-2027.e3.	6.4	58
75	Recent understanding in the mechanisms of addiction. Current Psychiatry Reports, 2004, 6, 347-351.	4.5	56
76	Heroin Cue–Evoked Astrocytic Structural Plasticity at Nucleus Accumbens Synapses Inhibits Heroin Seeking. Biological Psychiatry, 2019, 86, 811-819.	1.3	56
77	Chronic Administration of the Methylxanthine Propentofylline Impairs Reinstatement to Cocaine by a GLT-1-Dependent Mechanism. Neuropsychopharmacology, 2014, 39, 499-506.	5.4	54
78	Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. International Journal of Neuropsychopharmacology, 2017, 20, 797-812.	2.1	52
79	GABAergic projection from the ventral pallidum and globus pallidus to the subthalamic nucleus. Synapse, 1995, 20, 10-18.	1.2	49
80	The good and bad news about glutamate in drug addiction. Journal of Psychopharmacology, 2016, 30, 1095-1098.	4.0	47
81	Use of vivo-morpholinos for control of protein expression in the adult rat brain. Journal of Neuroscience Methods, 2012, 203, 354-360.	2.5	46
82	Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum. Journal of Neuroscience, 2014, 34, 1057-1066.	3.6	45
83	Cocaine and sucrose rewards recruit different seeking ensembles in the nucleus accumbens core. Molecular Psychiatry, 2020, 25, 3150-3163.	7.9	44
84	Regional distribution and cellular localization of ?-aminobutyric acid subtype 1 receptor mRNA in the rat brain., 1999, 407, 166-182.		43
85	The Opioid-Addicted Tetrapartite Synapse. Biological Psychiatry, 2020, 87, 34-43.	1.3	39
86	Metaplasticity at the addicted tetrapartite synapse: A common denominator of drug induced adaptations and potential treatment target for addiction. Neurobiology of Learning and Memory, 2018, 154, 97-111.	1.9	38
87	The rostral subcommissural ventral pallidum is a mix of ventral pallidal neurons and neurons from adjacent areas: an electrophysiological study. Brain Structure and Function, 2013, 218, 1487-1500.	2.3	36
88	Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons. Journal of Neuroscience, 2018, 38, 7100-7107.	3 . 6	35
89	An open-label pilot trial of $\langle i \rangle N \langle i \rangle$ -acetylcysteine and varenicline in adult cigarette smokers. American Journal of Drug and Alcohol Abuse, 2015, 41, 52-56.	2.1	34
90	New vistas on cannabis use disorder. Neuropharmacology, 2017, 124, 62-72.	4.1	33

#	Article	IF	Citations
91	Corticostriatal circuitry in regulating diseases characterized by intrusive thinking. Dialogues in Clinical Neuroscience, 2016, 18, 65-76.	3.7	33
92	Extracellular Matrix Signaling Through β3 Integrin Mediates Cocaine Cue–Induced Transient Synaptic Plasticity and Relapse. Biological Psychiatry, 2019, 86, 377-387.	1.3	31
93	Interrupted expression of NAC-1 augments the behavioral responses to cocaine., 1999, 33, 153-159.		28
94	Â2Â-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse. Journal of Neuroscience, 2014, 34, 8605-8611.	3.6	27
95	Cocaine Use Reverses Striatal Plasticity Produced During Cocaine Seeking. Biological Psychiatry, 2017, 81, 616-624.	1.3	27
96	<i>N</i> â€Acetylcysteine treatment during acute stress prevents stressâ€induced augmentation of addictive drug use and relapse. Addiction Biology, 2020, 25, e12798.	2.6	27
97	Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology, 2023, 48, 21-36.	5.4	27
98	Heroin Seeking and Extinction From Seeking Activate Matrix Metalloproteinases at Synapses on Distinct Subpopulations of Accumbens Cells. Biological Psychiatry, 2021, 89, 947-958.	1.3	26
99	Stressâ€induced sensitization to cocaine: actin cytoskeleton remodeling within mesocorticolimbic nuclei. European Journal of Neuroscience, 2012, 36, 3103-3117.	2.6	25
100	Astrocytes as cellular mediators of cue reactivity in addiction. Current Opinion in Pharmacology, 2021, 56, 1-6.	3.5	25
101	Circuit selectivity in drug versus natural reward seeking behaviors. Journal of Neurochemistry, 2021, 157, 1450-1472.	3.9	25
102	Rapid, transient potentiation of dendritic spines in context-induced relapse to cocaine seeking. Addiction Biology, 2014, 19, 972-974.	2.6	24
103	The Potential of N-Acetyl-L-Cysteine (NAC) in the Treatment of Psychiatric Disorders. CNS Drugs, 2022, 36, 451-482.	5.9	24
104	Restoration of Kv7 Channel-Mediated Inhibition Reduces Cued-Reinstatement of Cocaine Seeking. Journal of Neuroscience, 2018, 38, 4212-4229.	3.6	20
105	N-acetylcysteine mitigates acute opioid withdrawal behaviors and CNS oxidative stress in neonatal rats. Pediatric Research, 2020, 88, 77-84.	2.3	20
106	Homer2 gene deletion in mice produces a phenotype similar to chronic cocaine treated rats. Neurotoxicity Research, 2004, 6, 385-387.	2.7	19
107	Accumbens Mechanisms for Cued Sucrose Seeking. Neuropsychopharmacology, 2017, 42, 2377-2386.	5.4	19
108	Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity. Molecular Psychiatry, 2021, 26, 6159-6169.	7.9	19

#	Article	IF	Citations
109	Behavioral and accumbens synaptic plasticity induced by cues associated with restraint stress. Neuropsychopharmacology, 2021, 46, 1848-1856.	5.4	18
110	Abstinence From Drug Dependence After Bilateral Globus Pallidus Hypoxic-Ischemic Injury. Biological Psychiatry, 2016, 80, e79-e80.	1.3	17
111	Targeting redox regulation to treat substance use disorder using Nâ€acetylcysteine. European Journal of Neuroscience, 2019, 50, 2538-2551.	2.6	17
112	A role for glutamate transmission in addiction to psychostimulants. Addiction Biology, 2000, 5, 325-329.	2.6	16
113	The Monoamine Neurons of the Rat Brain Preferentially Express a Splice Variant of $\hat{l}\pm 1B$ Subunit of the N-Type Calcium Channel. Journal of Neurochemistry, 2002, 73, 1718-1723.	3.9	16
114	Relapse-Associated Transient Synaptic Potentiation Requires Integrin-Mediated Activation of Focal Adhesion Kinase and Cofilin in D1-Expressing Neurons. Journal of Neuroscience, 2020, 40, 8463-8477.	3.6	16
115	Accumbens brainâ€derived neurotrophic factor (BDNF) transmission inhibits cocaine seeking. Addiction Biology, 2019, 24, 860-873.	2.6	15
116	Post-translational S-glutathionylation of cofilin increases actin cycling during cocaine seeking. PLoS ONE, 2019, 14, e0223037.	2.5	14
117	The loss of NMDARâ€dependent LTD following cannabinoid selfâ€administration is restored by positive allosteric modulation of CB1 receptors. Addiction Biology, 2020, 25, e12843.	2.6	14
118	Astrocytes in the ventral pallidum extinguish heroin seeking through GAT-3 upregulation and morphological plasticity at D1-MSN terminals. Molecular Psychiatry, 2022, 27, 855-864.	7.9	14
119	Role of perisynaptic parameters in neurotransmitter homeostasisâ€"Computational study of a general synapse. Synapse, 2012, 66, 608-621.	1.2	13
120	N-acetylcysteine for the treatment of comorbid alcohol use disorder and posttraumatic stress disorder: Design and methodology of a randomized clinical trial. Contemporary Clinical Trials, 2020, 91, 105961.	1.8	13
121	Long-term impact of acute restraint stress on heroin self-administration, reinstatement, and stress reactivity. Psychopharmacology, 2020, 237, 1709-1721.	3.1	13
122	Molecular Diffusion Model of Neurotransmitter Homeostasis Around Synapses Supporting Gradients. Neural Computation, 2011, 23, 984-1014.	2.2	12
123	Getting to the core of addiction: Hatching the addiction egg. Nature Medicine, 2012, 18, 502-503.	30.7	12
124	A Novel Assay Allowing Drug Self-Administration, Extinction, and Reinstatement Testing in Head-Restrained Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 744715.	2.0	12
125	Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene. Addiction Biology, 2016, 21, 530-546.	2.6	11
126	Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Molecular Neurobiology, 2020, 57, 346-357.	4.0	11

#	Article	IF	CITATIONS
127	Accumbens nNOS Interneurons Regulate Cocaine Relapse. Journal of Neuroscience, 2017, 37, 742-756.	3.6	11
128	The Temporal Sequence of Changes in Gene Expression by Drugs of Abuse. , 2003, 79, 03-12.		10
129	A multi-centre, double-blind, 12-week, randomized, placebo-controlled trial to assess the efficacy of adjunctive N-Acetylcysteine for treatment-resistant PTSD: a study protocol. BMC Psychiatry, 2020, 20, 397.	2.6	7
130	More Cocaine—More Glutamate—More Addiction. Biological Psychiatry, 2014, 76, 765-766.	1.3	6
131	Transient synaptic potentiation in nucleus accumbens shell during refraining from cocaine seeking. Addiction Biology, 2020, 25, e12759.	2.6	6
132	Perspective: The Manifest Destiny of Cocaine Research. Neuropsychopharmacology, 2009, 34, 1089-1090.	5.4	5
133	Extrasynaptic therapeutic targets in substance use and stress disorders. Trends in Pharmacological Sciences, 2022, 43, 56-68.	8.7	5
134	Deconstructing and Reconstructing the Dichotomy That Is Dopamine Receptor-1– and Dopamine Receptor-2–Expressing Neurons. Biological Psychiatry, 2018, 84, 862-864.	1.3	4
135	Non-Opioid Treatments for Opioid Use Disorder: Rationales and Data to Date. Drugs, 2020, 80, 1509-1524.	10.9	4
136	The Role of N-Acetylcysteine in Inhibiting Responding During Extinction in Rats Trained to Self-Administer Cocaine. The Open Addiction Journal, 2013, 3, 88-91.	0.5	4
137	Network-Based Discovery of Opioid Use Vulnerability in Rats Using the Bayesian Stochastic Block Model. Frontiers in Psychiatry, 2021, 12, 745468.	2.6	4
138	"Mourning―a lost opportunity. Psychopharmacology, 2014, 231, 3921-3922.	3.1	2
139	Assessing combined effects of varenicline and <i>N</i> â€ecetylcysteine on reducing nicotine seeking in rats. Addiction Biology, 2022, 27, e13151.	2.6	2
140	S36. DIFFERENTIAL ENCODING OF SENSITIZATION AND CROSS SENSITIZATION TO PSYCHOSTIMULANTS AND ANTIPSYCHOTICS IN NUCLEUS ACCUMBENS D1- AND D2- RECEPTOR EXPRESSING MEDIUM SPINY NEURONS. Schizophrenia Bulletin, 2018, 44, S337-S338.	4.3	1
141	Cannabinoid use is enhanced by stress and changes conditioned stress responses. Neuropsychopharmacology, 2022, 47, 1037-1045.	5.4	1
142	Morphological plasticity of ventral pallidal astrocytes is associated with D1 receptor-expressing terminals during heroin seeking. Molecular Psychiatry, 2022, 27, 771-772.	7.9	1
143	Activity-dependent subcellular localization of NAC1, dendrites and glia. European Journal of Neuroscience, 2005, 22, 1552-1552.	2.6	0
144	Reply: Clinical Implications of Cocaine-Induced Cortical Depression. Neuropsychopharmacology, 2005, 30, 1034-1035.	5.4	0

#	Article	lF	CITATIONS
145	Stochastic Model of Glutamatergic PFC-NAc Synapse Predicts Cocaine-Induced Changes in Receptor Occupancy. , 2009, , .		O
146	Reply to: N-Acetylcysteine in Treatment of Substance Use Disorders. Biological Psychiatry, 2019, 85, e61.	1.3	0
147	Understanding the Munchies. Neuron, 2020, 107, 11-13.	8.1	O
148	Drug versus nonâ€drug behaviors: A dualâ€reward model of sex differences and neurobiological mechanisms in rats. Journal of the Experimental Analysis of Behavior, 2022, 117, 457-471.	1.1	0