Gennady Fiksel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring magnetic flux suppression in high-power laser–plasma interactions. Physics of Plasmas, 2022, 29, .	1.9	14
2	Experimental observations of detached bow shock formation in the interaction of a laser-produced plasma with a magnetized obstacle. Physics of Plasmas, 2022, 29, .	1.9	6
3	Proton deflectometry with <i>in situ</i> x-ray reference for absolute measurement of electromagnetic fields in high-energy-density plasmas. Review of Scientific Instruments, 2022, 93, 023502.	1.3	4
4	Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems. Applied Optics, 2022, 61, C133.	1.8	3
5	Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions. Review of Scientific Instruments, 2021, 92, 033516.	1.3	6
6	Pulse width dependence of magnetic field generation using laser-powered capacitor coils. Physics of Plasmas, 2021, 28, 052105.	1.9	9
7	Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas, 2021, 28, .	1.9	7
8	Electron energization during merging of self-magnetized, high-beta, laser-produced plasmas. Journal of Plasma Physics, 2021, 87, .	2.1	1
9	Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma. Physics of Plasmas, 2021, 28, .	1.9	9
10	Magnetic Signatures of Radiation-Driven Double Ablation Fronts. Physical Review Letters, 2020, 125, 145001.	7.8	23
11	A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics, 2020, 86, .	2.1	31
12	Study of a magnetically driven reconnection platform using ultrafast proton radiography. Physics of Plasmas, 2019, 26, .	1.9	17
13	Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas. Physical Review Letters, 2019, 122, 245001.	7.8	33
14	A ten-inch manipulator (TIM) based fast-electron spectrometer with multiple viewing angles (OU-ESM). Review of Scientific Instruments, 2019, 90, 063501.	1.3	8
15	Biermann-Battery-Mediated Magnetic Reconnection in 3D Colliding Plasmas. Physical Review Letters, 2018, 121, 095001.	7.8	12
16	Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas. Physics of Plasmas, 2017, 24, 092901.	1.9	18
17	Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. Physical Review Letters, 2017, 119, 025001.	7.8	66
18	A simple model for estimating a magnetic field in laser-driven coils. Applied Physics Letters, 2016, 109, .	3.3	27

Gennady Fiksel

#	Article	IF	CITATIONS
19	Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current. Physics of Plasmas, 2016, 23, .	1.9	57
20	Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas. Proceedings of the International Astronomical Union, 2015, 11, 329-332.	0.0	0
21	Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility. Review of Scientific Instruments, 2015, 86, 016105.	1.3	50
22	Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas, 2014, 21, .	1.9	37
23	Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes. Physical Review Letters, 2014, 113, 105003.	7.8	97
24	Filamentation Instability of Counterstreaming Laser-Driven Plasmas. Physical Review Letters, 2013, 111, 225002.	7.8	158
25	Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Physics of Plasmas, 2012, 19, .	1.9	112
26	Mass-Dependent Ion Heating during Magnetic Reconnection in a Laboratory Plasma. Physical Review Letters, 2009, 103, 145002.	7.8	50
27	High-β, improved confinement reversed-field pinch plasmas at high density. Physics of Plasmas, 2008, 15, 010701.	1.9	18
28	Anomalous impurity ion heating from Alfvénic cascade in the reversed field pinch. Physics of Plasmas, 2008, 15, .	1.9	16
29	Local measurements of plasma ion dynamics with optical probes. Review of Scientific Instruments, 2006, 77, 10F112.	1.3	7
30	Observation of Weak Impact of a Stochastic Magnetic Field on Fast-Ion Confinement. Physical Review Letters, 2005, 95, 125001.	7.8	37
31	Reconnection scaling experiment: A new device for three-dimensional magnetic reconnection studies. Review of Scientific Instruments, 2003, 74, 2324-2331.	1.3	56
32	Measurements of the radial profile of magnetic field in the Gas-Dynamic Trap using a motional Stark effect diagnostic. Review of Scientific Instruments, 2003, 74, 1592-1595.	1.3	8
33	Comparison of ion temperature diagnostics on the Madison symmetric torus reversed-field pinch. Review of Scientific Instruments, 2003, 74, 1892-1895.	1.3	2
34	Experimental study of ion heating and acceleration during magnetic reconnection. Physics of Plasmas, 2001, 8, 1916-1928.	1.9	49
35	Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch. Physics of Plasmas, 2000, 7, 3491-3494.	1.9	20
36	Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch. Physics of Plasmas, 1999, 6, 1813-1821.	1.9	50

Gennady Fiksel

#	Article	IF	CITATIONS
37	An optical probe for local measurements of fast plasma ion dynamics. Review of Scientific Instruments, 1998, 69, 2024-2026.	1.3	30
38	E×B flow shear and enhanced confinement in the Madison Symmetric Torus reversed-field pinch. Physics of Plasmas, 1998, 5, 1848-1854.	1.9	22
39	Ambipolar magnetic fluctuationâ€induced heat transport in toroidal devices. Physics of Plasmas, 1996, 3, 1999-2005.	1.9	27
40	Fast pyrobolometer for magnetic heat transport measurements. Review of Scientific Instruments, 1995, 66, 662-663.	1.3	3
41	Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the Madison symmetric torus reversed field pinch. Review of Scientific Instruments, 1993, 64, 2761-2764.	1.3	16