
Claudio Minero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxideâ^Fluoride System. Langmuir, 2000, 16, 2632-2641.	3.5	480
2	Photocatalytic degradation of atrazine and other s-triazine herbicides. Environmental Science & Technology, 1990, 24, 1559-1565.	10.0	398
3	Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxideâ°'Fluoride Systemâ€. Langmuir, 2000, 16, 8964-8972.	3.5	388
4	Cloud point transition in nonionic micellar solutions. The Journal of Physical Chemistry, 1984, 88, 309-317.	2.9	328
5	Sources and Sinks of Hydroxyl Radicals upon Irradiation of Natural Water Samples. Environmental Science & Technology, 2006, 40, 3775-3781.	10.0	328
6	Indirect Photochemistry in Sunlit Surface Waters: Photoinduced Production of Reactive Transient Species. Chemistry - A European Journal, 2014, 20, 10590-10606.	3.3	325
7	Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Electrochimica Acta, 1993, 38, 47-55.	5.2	306
8	Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir, 1989, 5, 250-255.	3.5	279
9	Analytical applications of organized molecular assemblies. Analytica Chimica Acta, 1985, 169, 1-29.	5.4	276
10	Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions. Toxicological and Environmental Chemistry, 1988, 16, 89-109.	1.2	275
11	Photodegradation Processes of the Antiepileptic Drug Carbamazepine, Relevant To Estuarine Waters. Environmental Science & Technology, 2006, 40, 5977-5983.	10.0	261
12	Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir, 1992, 8, 481-486.	3.5	237
13	Activation of Persulfate by Irradiated Magnetite: Implications for the Degradation of Phenol under Heterogeneous Photo-Fenton-Like Conditions. Environmental Science & Technology, 2015, 49, 1043-1050.	10.0	216
14	Chemical degradation of chlorophenols with Fenton's reagent (Fe2+ + H2O2). Chemosphere, 1987, 16, 2225-2237.	8.2	195
15	Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chemical Society Reviews, 2006, 35, 441-53.	38.1	195
16	Influence of agglomeration and aggregation on the photocatalytic activity of TiO 2 nanoparticles. Applied Catalysis B: Environmental, 2017, 216, 80-87.	20.2	170
17	Sustained production of H2O2 on irradiated TiO2– fluoride systems. Chemical Communications, 2005, , 2627.	4.1	163
18	Photocatalytic degradation of nonylphenol ethoxylated surfactants. Environmental Science & Technology, 1989, 23, 1380-1385.	10.0	155

#	Article	IF	CITATIONS
19	Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst. Applied Catalysis B: Environmental, 2005, 58, 79-88.	20.2	155
20	Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catalysis Today, 1999, 54, 205-216.	4.4	153
21	A local proton source in a [Mn(bpy-R)(CO) ₃ Br]-type redox catalyst enables CO ₂ reduction even in the absence of BrÃ,nsted acids. Chemical Communications, 2014, 50, 14670-14673.	4.1	144
22	Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 72, 261-267.	3.9	143
23	Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the •OH scavengers bicarbonate and carbonate. Water Research, 2009, 43, 4718-4728.	11.3	136
24	Photo-Fenton oxidation of phenol with magnetite as iron source. Applied Catalysis B: Environmental, 2014, 154-155, 102-109.	20.2	136
25	A quantitative evalution of the photocatalytic performance of TiO2 slurries. Applied Catalysis B: Environmental, 2006, 67, 257-269.	20.2	131
26	Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere, 1993, 26, 2103-2119.	8.2	128
27	Photochemical Fate of Carbamazepine in Surface Freshwaters: Laboratory Measures and Modeling. Environmental Science & Technology, 2012, 46, 8164-8173.	10.0	126
28	Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 70-76.	3.9	125
29	Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, 4782-4793.	3.3	123
30	Compound parabolic concentrator technology development to commercial solar detoxification applications. Solar Energy, 1999, 67, 317-330.	6.1	122
31	Fe(III)-Enhanced Sonochemical Degradation Of Methylene Blue In Aqueous Solution. Environmental Science & Construction & Constructi	10.0	119
32	Effect of Fluorination on the Surface Properties of Titania P25 Powder: An FTIR Study. Langmuir, 2010, 26, 2521-2527.	3.5	117
33	Photocatalytically Assisted Hydrolysis of Chlorinated Methanes under Anaerobic Conditions. Environmental Science & Technology, 1997, 31, 2198-2203.	10.0	111
34	Photochemincal processes involving nitrite in surface water samples. Aquatic Sciences, 2007, 69, 71-85.	1.5	111
35	Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental, 2008, 77, 308-316.	20.2	109
36	Modelling the photochemical fate of ibuprofen in surface waters. Water Research, 2011, 45, 6725-6736.	11.3	109

#	Article	IF	CITATIONS
37	Light-induced reduction of rhodium(III) and palladium(II) on titanium dioxide dispersions and the selective photochemical separation and recovery of gold(III), platinum(IV), and rhodium(III) in chloride media. Inorganic Chemistry, 1986, 25, 4499-4503.	4.0	108
38	Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: Transformation kinetics, intermediates, and modelling. Water Research, 2014, 53, 235-248.	11.3	106
39	New Processes in the Environmental Chemistry of Nitrite. 2. The Role of Hydrogen Peroxide. Environmental Science & Technology, 2003, 37, 4635-4641.	10.0	102
40	The fate of organic nitrogen in photocatalysis: an overview. Journal of Applied Electrochemistry, 2005, 35, 665-673.	2.9	102
41	Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light. Chemosphere, 1988, 17, 499-510.	8.2	99
42	Occurrence of 2,4-Dichlorophenol and of 2,4-Dichloro-6-Nitrophenol in the Rhône River Delta (Southern France). Environmental Science & Technology, 2007, 41, 3127-3133.	10.0	99
43	Large solar plant photocatalytic water decontamination: Effect of operational parameters. Solar Energy, 1996, 56, 421-428.	6.1	98
44	New Processes in the Environmental Chemistry of Nitrite:Â Nitration of Phenol upon Nitrite Photoinduced Oxidation. Environmental Science & Technology, 2002, 36, 669-676.	10.0	98
45	The fate of organic nitrogen under photocatalytic conditions: degradation of nitrophenols and aminophenols on irradiated TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 109, 171-176.	3.9	97
46	Critical properties of nonionic micellar solutions. Journal of Chemical Physics, 1985, 82, 1025-1031.	3.0	96
47	Large solar plant photocatalytic water decontamination: Degradation of atrazine. Solar Energy, 1996, 56, 411-419.	6.1	95
48	Photocatalytic process in TiO 2 /graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO 2. Catalysis Today, 2017, 281, 29-37.	4.4	95
49	Photocatalyzed mineralization of cresols in aqueous media with irradiated titania*1. Journal of Catalysis, 1991, 128, 352-365.	6.2	94
50	Formation of Condensation Products in Advanced Oxidation Technologies: The Photocatalytic Degradation of Dichlorophenols on TiO2. Environmental Science & Technology, 1995, 29, 2226-2234.	10.0	93
51	Aqueous Atmospheric Chemistry:  Formation of 2,4-Dinitrophenol upon Nitration of 2-Nitrophenol and 4-Nitrophenol in Solution. Environmental Science & Technology, 2005, 39, 7921-7931.	10.0	92
52	The role of colloidal particles in the photodegradation of organic compounds of environmental concern in aquatic systems. Advances in Colloid and Interface Science, 1990, 32, 271-316.	14.7	91
53	Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: Catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Research on Chemical Intermediates, 1993, 18, 183-202.	2.7	91
54	Light-assisted 1,4-dioxane degradation. Chemosphere, 1997, 35, 2675-2688.	8.2	90

#	Article	IF	CITATIONS
55	Photocatalytic activity and selectivity of titania colloids and particles prepared by the sol-gel technique: photooxidation of phenol and atrazine. Langmuir, 1993, 9, 2995-3001.	3.5	88
56	Phenol Chlorination and Photochlorination in the Presence of Chloride Ions in Homogeneous Aqueous Solution. Environmental Science & Technology, 2005, 39, 5066-5075.	10.0	87
57	Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways. Water Research, 2009, 43, 1959-1967.	11.3	84
58	Phototransformations of nitrogen containing organic compounds over irradiated semiconductor metal oxides. Coordination Chemistry Reviews, 1993, 125, 183-193.	18.8	81
59	Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere, 2001, 45, 893-902.	8.2	81
60	Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. Water Research, 2013, 47, 6109-6121.	11.3	81
61	Tailoring the Selectivity of Ti-Based Photocatalysts (TiO2 and Microporous ETS-10 and ETS-4) by Playing with Surface Morphology and Electronic Structure. Chemistry of Materials, 2006, 18, 3412-3424.	6.7	78
62	Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters. Water Research, 2015, 73, 145-156.	11.3	78
63	Glycerol as a probe molecule to uncover oxidation mechanism in photocatalysis. Applied Catalysis B: Environmental, 2012, 128, 135-143.	20.2	74
64	Kinetic studies in heterogeneous photocatalysis. 6. AM1 simulated sunlight photodegradation over titania in aqueous media: a first case of fluorinated aromatics and identification of intermediates. Langmuir, 1991, 7, 928-936.	3.5	72
65	Nitration and Photonitration of Naphthalene in Aqueous Systems. Environmental Science & Technology, 2005, 39, 1101-1110.	10.0	72
66	Evidence of the water-cage effect on the photolysis of NO3â^' and FeOH2+. Implications of this effect and of H2O2 surface accumulation on photochemistry at the air–water interface of atmospheric droplets. Atmospheric Environment, 2010, 44, 4859-4866.	4.1	71
67	Optical and Photochemical Characterization of Chromophoric Dissolved Organic Matter from Lakes in Terra Nova Bay, Antarctica. Evidence of Considerable Photoreactivity in an Extreme Environment. Environmental Science & Technology, 2013, 47, 14089-14098.	10.0	71
68	Photochemical transformation of atrazine and formation of photointermediates under conditions relevant to sunlit surface waters: Laboratory measures and modelling. Water Research, 2013, 47, 6211-6222.	11.3	71
69	Light Induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW12O403 The Case of 2,4,6-Trichlorophenol. Environmental Science & Technology, 2000, 34, 2024-2028.	10.0	70
70	Photocatalytic metamaterials: TiO2 inverse opals. Chemical Communications, 2011, 47, 6147.	4.1	70
71	Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide—TiO 2 composites. Applied Catalysis B: Environmental, 2016, 183, 96-106.	20.2	70
72	Identification of photocatalytic degradation pathways of 2-Cl-s-triazine herbicides and detection of their decomposition intermediates. Chemosphere, 1992, 24, 891-910.	8.2	68

#	Article	IF	CITATIONS
73	Pesticide by-products in the Rhône delta (Southern France). The case of 4-chloro-2-methylphenol and of its nitroderivative. Chemosphere, 2009, 74, 599-604.	8.2	68
74	Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Science of the Total Environment, 2008, 398, 196-202.	8.0	67
75	Modeling Phototransformation Reactions in Surface Water Bodies: 2,4-Dichloro-6-Nitrophenol As a Case Study. Environmental Science & Technology, 2011, 45, 209-214.	10.0	67
76	Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters. Science of the Total Environment, 2013, 463-464, 243-251.	8.0	67
77	Assessing the phototransformation of diclofenac, clofibric acid and naproxen in surface waters: Model predictions and comparison with field data. Water Research, 2016, 105, 383-394.	11.3	67
78	Effect of humic acids on the Fenton degradation of phenol. Environmental Chemistry Letters, 2004, 2, 129-133.	16.2	66
79	Formic Acid Photoreforming for Hydrogen Production on Shape-Controlled Anatase TiO ₂ Nanoparticles: Assessment of the Role of Fluorides, {101}/{001} Surfaces Ratio, and Platinization. ACS Catalysis, 2019, 9, 6692-6697.	11.2	65
80	Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3765-3771.	1.7	63
81	Photocatalytic mineralization of nitrogen-containing benzene derivatives. Catalysis Today, 1997, 39, 187-195.	4.4	63
82	Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution. Chemosphere, 2004, 56, 1049-1059.	8.2	63
83	Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: Reaction pathways and implications for surface waters. Water Research, 2013, 47, 5943-5953.	11.3	62
84	Photocatalytic degradation of DDT mediated in aqueous semiconductor slurries by simulated sunlight. Environmental Toxicology and Chemistry, 1989, 8, 997-1002.	4.3	61
85	The pH-dependent photochemistry of anthraquinone-2-sulfonate. Photochemical and Photobiological Sciences, 2010, 9, 323-330.	2.9	61
86	The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater. Science of the Total Environment, 2012, 439, 67-75.	8.0	61
87	Photocatalytic degradation of bentazon by TiO2 particles. Chemosphere, 1989, 18, 1437-1445.	8.2	60
88	Metal Oxides as Photocatalysts for Environmental Detoxification. Comments on Inorganic Chemistry, 1994, 15, 297-337.	5.2	60
89	Tuning TiO ₂ nanoparticle morphology in graphene–TiO ₂ hybrids by graphene surface modification. Nanoscale, 2014, 6, 6710-6719.	5.6	60
90	Photochemical generation of reactive species upon irradiation of rainwater: Negligible photoactivity of dissolved organic matter. Science of the Total Environment, 2010, 408, 3367-3373.	8.0	57

#	Article	IF	CITATIONS
91	Photocatalytic interconversion of nitrogen-containing benzene derivatives. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1993-2000.	1.7	56
92	Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 329-338.	4.7	56
93	New insights into the environmental photochemistry of 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan): Reconsidering the importance of indirect photoreactions. Water Research, 2015, 72, 271-280.	11.3	56
94	Formation of nitrophenols upon UV irradiation of phenol and nitrate in aqueous solutions and in TiO2 aqueous suspensions. Chemosphere, 2001, 44, 237-248.	8.2	55
95	Photochemical production of organic matter triplet states in water samples from mountain lakes, located below or above the tree line. Chemosphere, 2012, 88, 1208-1213.	8.2	55
96	Photocatalytic degradation of selected anticancer drugs and identification of their transformation products in water by liquid chromatography–high resolution mass spectrometry. Journal of Chromatography A, 2014, 1362, 135-144.	3.7	55
97	Role of oxidative and reductive pathways in the photocatalytic degradation of organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 321-327.	4.7	54
98	Chemical and optical phototransformation of dissolved organic matter. Water Research, 2012, 46, 3197-3207.	11.3	54
99	Photo–Fenton reaction in the presence of morphologically controlled hematite as iron source. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 99-107.	3.9	54
100	Effect of dissolved organic compounds on the photodegradation of the herbicide MCPA in aqueous solution. Water Research, 2010, 44, 6053-6062.	11.3	53
101	Photocatalytic hydrogen production on Pt-loaded TiO2 inverse opals. Applied Catalysis B: Environmental, 2015, 163, 452-458.	20.2	53
102	Photo-oxidative degradation of toluene in aqueous media by hydroxyl radicals. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 59-68.	3.9	52
103	Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenol: A mechanistic study of environmental significance. Photochemical and Photobiological Sciences, 2012, 11, 418-424.	2.9	52
104	Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Environmental Research, 2019, 179, 108750.	7.5	52
105	Assessing the occurrence of the dibromide radical (Br2â^') in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling. Science of the Total Environment, 2012, 439, 299-306.	8.0	50
106	Phototransformation of anthraquinone-2-sulphonate in aqueous solution. Photochemical and Photobiological Sciences, 2012, 11, 1445-1453.	2.9	49
107	Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater. Applied Catalysis B: Environmental, 2019, 245, 159-166.	20.2	49
108	Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution. Chemosphere, 2014, 111, 529-536.	8.2	48

#	Article	IF	CITATIONS
109	Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state. Photochemical and Photobiological Sciences, 2011, 10, 1817-1824.	2.9	47
110	Photosensitized transformations of atrazine under simulated sunlight in aqueous humic acid solution. Chemosphere, 1992, 24, 1597-1606.	8.2	46
111	Photolytic and photocatalytic decomposition of bromomethanes in irradiated aqueous solutions. Applied Catalysis B: Environmental, 1999, 21, 191-202.	20.2	46
112	Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate. Photochemical and Photobiological Sciences, 2008, 7, 321-327.	2.9	46
113	Electrochemical Reduction of CO ₂ by M(CO) ₄ (diimine) Complexes (M=Mo, W): Catalytic Activity Improved by 2,2â€2â€Dipyridylamine. ChemElectroChem, 2015, 2, 1372-1379.	3.4	46
114	Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water. Environmental Chemistry Letters, 2010, 8, 193-198.	16.2	45
115	Dark production of hydroxyl radicals by aeration of anoxic lake water. Science of the Total Environment, 2015, 527-528, 322-327.	8.0	45
116	Photo―and Electrocatalytic Reduction of CO ₂ by [Re(CO) ₃ {α,α′â€Diimineâ€(4â€piperidinylâ€1,8â€naphthalimide)}Cl] Complexes. European Journ Inorganic Chemistry, 2015, 2015, 296-304.	n al @f	45
117	Assessing the transformation kinetics of 2- and 4-nitrophenol in the atmospheric aqueous phase. Implications for the distribution of both nitroisomers in the atmosphere. Atmospheric Environment, 2009, 43, 2321-2327.	4.1	44
118	A quantitative assessment of the production of ˙OH and additional oxidants in the dark Fenton reaction: Fenton degradation of aromatic amines. RSC Advances, 2013, 3, 26443.	3.6	44
119	A rigorous kinetic approach to model primary oxidative steps of photocatalytic degradations. Solar Energy Materials and Solar Cells, 1995, 38, 421-430.	6.2	43
120	Host-guest chemistry in the gas phase and at the gas-solid interface: Fundamental aspects and practical applications. Pure and Applied Chemistry, 1995, 67, 1075-1084.	1.9	43
121	Photochemical Formation of Nitrite and Nitrous Acid (HONO) upon Irradiation of Nitrophenols in Aqueous Solution and in Viscous Secondary Organic Aerosol Proxy. Environmental Science & Technology, 2017, 51, 7486-7495.	10.0	42
122	Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2. Chemosphere, 2001, 45, 903-910.	8.2	41
123	Different photocatalytic fate of amido nitrogen in formamide and urea. Chemical Communications, 2004, , 1504.	4.1	41
124	Modelling the occurrence and reactivity of the carbonate radical in surface freshwater. Comptes Rendus Chimie, 2009, 12, 865-871.	0.5	41
125	Phototransformation of the Herbicide Propanil in Paddy Field Water. Environmental Science & Technology, 2017, 51, 2695-2704.	10.0	40
126	THE ROLE OF HUMIC SUBSTANCES IN THE PHOTOCATALYTIC DEGRADATION OF WATER CONTAMINANTS. Journal of Dispersion Science and Technology, 1999, 20, 643-661.	2.4	39

#	Article	IF	CITATIONS
127	Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight. Aquatic Sciences, 2009, 71, 34-45.	1.5	39
128	On the effect of 2-propanol on phenol photonitration upon nitrate photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 68-70.	3.9	39
129	Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO. Chemosphere, 1994, 28, 1229-1244.	8.2	38
130	Heterogeneous photocatalytic transformations of s-triazine derivatives. Research on Chemical Intermediates, 1997, 23, 291-310.	2.7	38
131	Fate of selected pharmaceuticals in river waters. Environmental Science and Pollution Research, 2013, 20, 2262-2270.	5.3	38
132	Kinetic studies in heterogeneous photocatalysis 4. The photomineralization of a hydroquinone and a catechol. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 55, 243-249.	3.9	37
133	The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater. Science of the Total Environment, 2014, 493, 411-418.	8.0	37
134	Partition equilibria of phenols between water and anionic micelles. Analytica Chimica Acta, 1988, 212, 171-180.	5.4	35
135	Micellar properties of sodium dodecylpoly(oxyethylene) sulfates. The Journal of Physical Chemistry, 1986, 90, 1620-1625.	2.9	34
136	Photocatalytic soil decontamination. Chemosphere, 1992, 25, 343-351.	8.2	34
137	Modelling the occurrence and reactivity of hydroxyl radicals in surface waters: implications for the fate of selected pesticides. International Journal of Environmental Analytical Chemistry, 2010, 90, 260-275.	3.3	34
138	Transformation of 2,4,6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures. Chemosphere, 2013, 90, 306-311.	8.2	34
139	Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere, 2016, 147, 477-489.	8.2	34
140	Bicarbonate-enhanced transformation of phenol upon irradiation of hematite, nitrate, and nitrite. Photochemical and Photobiological Sciences, 2009, 8, 91-100.	2.9	33
141	Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution. Environmental Chemistry Letters, 2010, 8, 95-100.	16.2	33
142	Phototransformation processes of 2,4-dinitrophenol, relevant to atmospheric water droplets. Chemosphere, 2010, 80, 753-758.	8.2	33
143	N,N-diethyl-m-toluamide transformation in river water. Science of the Total Environment, 2011, 409, 3894-901.	8.0	33
144	Phenol transformation and dimerisation, photosensitised by the triplet state of 1-nitronaphthalene: A possible pathway to humic-like substances (HULIS) in atmospheric waters. Atmospheric Environment, 2013, 70, 318-327.	4.1	33

#	Article	IF	CITATIONS
145	Formation of substances with humic-like fluorescence properties, upon photoinduced oligomerization of typical phenolic compounds emitted by biomass burning. Atmospheric Environment, 2019, 206, 197-207.	4.1	33
146	Synthesis, characterization and photocatalytic performance of p-type carbon nitride. Applied Catalysis B: Environmental, 2019, 242, 121-131.	20.2	33
147	Determination of trace amounts of highly hydrophilic compounds in water by direct derivatization and gas chromatography ? mass spectrometry. Fresenius' Journal of Analytical Chemistry, 1994, 350, 403-409.	1.5	32
148	Phenol Photonitration and Photonitrosation upon Nitrite Photolysis in basic solution. International Journal of Environmental Analytical Chemistry, 2004, 84, 493-504.	3.3	32
149	Photoinduced transformation processes of 2,4-dichlorophenol and 2,6-dichlorophenol on nitrate irradiation. Chemosphere, 2007, 69, 1548-1554.	8.2	32
150	Formation and reactivity of the dichloride radical (<mml:math) (xml<="" 0="" 10="" 50="" 557="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>8.2</td><td>32</td></mml:math)>	8.2	32
151	Chemosphere, 2014, 95, 464-469. Photocatalytic transformations of hydrocarbons at the sea water/air interface under solar radiation. Marine Chemistry, 1997, 58, 361-372.	2.3	31
152	Phenol nitration upon oxidation of nitrite by Mn(III,IV) (hydr)oxides. Chemosphere, 2004, 55, 941-949.	8.2	31
153	A proof of the direct hole transfer in photocatalysis: The case of melamine. Applied Catalysis A: General, 2016, 521, 57-67.	4.3	31
154	One-electron transfer equilibriums and kinetics of N-methylphenothiazine in micellar systems. The Journal of Physical Chemistry, 1983, 87, 399-407.	2.9	30
155	DEGRADATION OF ATRAZINE IN SOIL THROUGH INDUCED PHOTOCATALYTIC PROCESSES. Soil Science, 1990, 150, 523-526.	0.9	30
156	Spectrophotometric Characterisation of Surface Lakewater Samples: Implications for the Quantification of Nitrate and the Properties of Dissolved Organic Matter. Annali Di Chimica, 2007, 97, 1107-1116.	0.6	30
157	Multiple unknown degradants generated from the insect repellent DEET by photoinduced processes on TiO ₂ . Journal of Mass Spectrometry, 2011, 46, 24-40.	1.6	30
158	On the Standardization of the Photocatalytic Gas/Solid Tests. International Journal of Chemical Reactor Engineering, 2013, 11, 717-732.	1.1	30
159	Photochemical stability and reactivity of graphene oxide. Journal of Materials Science, 2015, 50, 2399-2409.	3.7	30
160	Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron. RSC Advances, 2016, 6, 86752-86761.	3.6	30
161	The atmospheric chemistry of hydrogen peroxide: a review. Annali Di Chimica, 2003, 93, 477-88.	0.6	30
162	Degradation pathways of atrazine under solar light and in the presence of TiO2 colloidal particles. Science of the Total Environment, 1992, 123-124, 161-169.	8.0	29

#	Article	IF	CITATIONS
163	Detection of Nitro-Substituted Polycyclic Aromatic Hydrocarbons in the Antarctic Airborne Particulate. International Journal of Environmental Analytical Chemistry, 2001, 79, 257-272.	3.3	29
164	On the effect of pH in aromatic photonitration upon nitrate photolysis. Chemosphere, 2007, 66, 650-656.	8.2	29
165	Formation of Organobrominated Compounds in the Presence of Bromide under Simulated Atmospheric Aerosol Conditions. ChemSusChem, 2008, 1, 197-204.	6.8	29
166	Photoinduced disinfection in sunlit natural waters: Measurement of the second order inactivation rate constants between E.Âcoli and photogenerated transient species. Water Research, 2018, 147, 242-253.	11.3	29
167	A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy). Science of the Total Environment, 2011, 409, 3463-3471.	8.0	28
168	Photoinduced transformation of pyridinium-based ionic liquids, and implications for their photochemical behavior in surface waters. Water Research, 2017, 122, 194-206.	11.3	28
169	The Role of Surface Texture on the Photocatalytic H2 Production on TiO2. Catalysts, 2019, 9, 32.	3.5	28
170	Laboratory and field evidence of the photonitration of 4-chlorophenol to 2-nitro-4-chlorophenol and of the associated bicarbonate effect. Environmental Science and Pollution Research, 2010, 17, 1063-1069.	5.3	27
171	Photoelectrochemical study of TiO2 inverse opals. Journal of Materials Chemistry, 2011, 21, 19144.	6.7	27
172	Photochemical transformation of phenylurea herbicides in surface waters: A model assessment of persistence, and implications for the possible generation of hazardous intermediates. Chemosphere, 2015, 119, 601-607.	8.2	27
173	Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2. Research on Chemical Intermediates, 2007, 33, 319-332.	2.7	26
174	Electron-transfer reactions in microemulsions. Oxidation of benzenediols by hexachloroiridate(IV). Langmuir, 1988, 4, 101-105.	3.5	25
175	Sunlight photocatalytic degradation of organic pollutants in aquatic systems. Waste Management, 1990, 10, 65-71.	7.4	25
176	Sub-parts-per-billion determination of nitro-substituted polynuclear aromatic hydrocarbons in airborne particulate matter and soil by electron capture—Tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 1996, 7, 1255-1265.	2.8	25
177	Photocatalytic transformation of flufenacet over TiO2 aqueous suspensions: Identification of intermediates and the mechanism involved. Applied Catalysis B: Environmental, 2011, 110, 238-250.	20.2	25
178	Could triplet-sensitised transformation of phenolic compounds represent a source of fulvic-like substances in natural waters?. Chemosphere, 2013, 90, 881-884.	8.2	25
179	Role of iron species in the photo-transformation of phenol in artificial and natural seawater. Science of the Total Environment, 2012, 426, 281-288.	8.0	24
180	Suppression of inhibition of substrate photodegradation by scavengers of hydroxyl radicals: the solvent-cage effect of bromide on nitrate photolysis. Environmental Chemistry Letters, 2009, 7, 337-342.	16.2	23

#	Article	IF	CITATIONS
181	Photodegradation of nitrite in lake waters: role of dissolved organic matter. Environmental Chemistry, 2009, 6, 407.	1.5	23
182	Low to negligible photoactivity of lake-water matter in the size range from 0.1 to 5 μm. Chemosphere, 2011, 83, 1480-1485.	8.2	23
183	Phototransformation of Acesulfame K in surface waters: Comparison of two techniques for the measurement of the second-order rate constants of indirect photodegradation, and modelling of photoreaction kinetics. Chemosphere, 2017, 186, 185-192.	8.2	23
184	Laser-light scattering study of size and stability of ganglioside-phospholipid small unilamellar vesicles. Chemistry and Physics of Lipids, 1985, 37, 83-97.	3.2	22
185	Reactions Induced in Natural Waters by Irradiation of Nitrate and Nitrite Ions. , 0, , 221-253.		22
186	Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation. Chemosphere, 2007, 68, 2111-2117.	8.2	22
187	Phototransformation pathways of the fungicide dimethomorph ((E,Z)) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf waters. Science of the Total Environment, 2014, 500-501, 351-360.	50 507 To 8.0	d (4-[3-(4-ch 22
188	Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden. Water Research, 2018, 129, 94-104.	11.3	22
189	Improved procedure for n-hexyl chloroformate-mediated derivatization of highly hydrophilic substances directly in water: hydroxyaminic compounds. Journal of Chromatography A, 1998, 793, 307-316.	3.7	21
190	Photocatalytic transformations of CCl3Br, CBr3F, CHCl2Br and CH2BrCl in aerobic and anaerobic conditions. Applied Catalysis B: Environmental, 2001, 29, 23-34.	20.2	21
191	Aromatic photonitration in homogeneous and heterogeneous aqueous systems. Environmental Science and Pollution Research, 2003, 10, 321-324.	5.3	21
192	Photoinduced halophenol formation in the presence of iron(III) species or cadmium sulfide. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 61-67.	3.9	21
193	Transformations of Benzene Photoinduced by Nitrate Salts and Iron Oxide. Journal of Atmospheric Chemistry, 2005, 52, 259-281.	3.2	21
194	An Empirical, Quantitative Approach to Predict the Reactivity of Some Substituted Aromatic Compounds Towards Reactive Radical Species (Cl2-·, Br2-·, ·NO2, SO3-·, SO4-·) in Aqueous Solution (3 pp). Environmental Science and Pollution Research, 2006, 13, 212-214.	5.3	21
195	Study on the Photodegradation of Salicylic Acid in Different Vehicles in the Absence and in the Presence of TiO2. Journal of Dispersion Science and Technology, 2007, 28, 805-818.	2.4	21
196	Phenol transformation photosensitised by quinoid compounds. Physical Chemistry Chemical Physics, 2011, 13, 11213.	2.8	21
197	Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data. Science of the Total Environment, 2012, 426, 296-303.	8.0	21
198	Photosensitised humic-like substances (HULIS) formation processes of atmospheric significance: a review. Environmental Science and Pollution Research, 2014, 21, 11614-11622.	5.3	21

#	Article	IF	CITATIONS
199	Photocatalytic rate dependence on light absorption properties of different TiO2 specimens. Catalysis Today, 2020, 340, 12-18.	4.4	21
200	Ultratrace determination of highly hydrophilic compounds by 2,2,3,3,4,4,5,5-octafluoropentyl chloroformate-mediated derivatization directly in water. Journal of the American Society for Mass Spectrometry, 1999, 10, 1328-1336.	2.8	20
201	Photocatalytic oxidation of dinitronaphthalenes: Theory and experiment. Chemosphere, 2009, 75, 1008-1014.	8.2	20
202	Role of H2O2 in the photo-transformation of phenol in artificial and natural seawater. Science of the Total Environment, 2012, 431, 84-91.	8.0	20
203	Modelling lake-water photochemistry: Three-decade assessment of the steady-state concentration of photoreactive transients (OH, and 3CDOMâ^—) in the surface water of polymictic Lake Peipsi (Estonia/Russia). Chemosphere, 2013, 90, 2589-2596.	8.2	20
204	Selected hybrid photocatalytic materials for the removal of drugs from water. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 11-17.	5.9	20
205	Dioxygen evolution from inorganic systems. Water oxidation mediated by RuO2 and TiO2-RuO2 Colloids. Inorganica Chimica Acta, 1984, 91, 301-305.	2.4	19
206	Reactions of Hexafluorobenzene and Pentafluorophenol Catalyzed by Irradiated TiO2 in Aqueous Suspensions. Langmuir, 1994, 10, 692-698.	3.5	19
207	Electron-transfer equilibria and kinetics of N-alkylphenothiazines in micellar systems. The Journal of Physical Chemistry, 1991, 95, 761-766.	2.9	18
208	Assessing the steady-state [·NO2] in environmental samples. Environmental Science and Pollution Research, 2007, 14, 241-243.	5.3	18
209	Phenol transformation induced by UVA photolysis of the complex FeCl2+. Environmental Chemistry Letters, 2008, 6, 29-34.	16.2	18
210	An overview of possible processes able to account for the occurrence of nitro-PAHs in Antarctic particulate matter. Microchemical Journal, 2010, 96, 213-217.	4.5	18
211	A model assessment of the importance of direct photolysis in the photo-fate of cephalosporins in surface waters: Possible formation of toxic intermediates. Chemosphere, 2015, 134, 452-458.	8.2	18
212	Coupling of Nanofiltration and Thermal Fenton Reaction for the Abatement of Carbamazepine in Wastewater. ACS Omega, 2018, 3, 9407-9418.	3.5	18
213	Electrochemical abatement of cefazolin: Towards a viable treatment for antibiotic-containing urine. Journal of Cleaner Production, 2021, 289, 125722.	9.3	18
214	Photocatalytic mineralization of chlorinated organic pollutants in water by polyoxometallates. Determination of intermediates and final degradation products. Research on Chemical Intermediates, 2000, 26, 235-251.	2.7	17
215	Enhancement by anthraquinone-2-sulphonate of the photonitration of phenol by nitrite: Implication for the photoproduction of nitrogen dioxide by coloured dissolved organic matter in surface waters. Chemosphere, 2010, 81, 1401-1406.	8.2	17
216	Photochemical and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochemical and Photobiological Sciences, 2011, 10, 601-609.	2.9	17

#	Article	IF	CITATIONS
217	Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 23800-23809.	8.0	17
218	An experimental methodology to measure the reaction rate constants of processes sensitised by the triplet state of 4-carboxybenzophenone as a proxy of the triplet states of chromophoric dissolved organic matter, under steady-state irradiation conditions. Environmental Sciences: Processes and Impacts, 2018, 20, 1007-1019.	3.5	17
219	Seasonal and Water Column Trends of the Relative Role of Nitrate and Nitrite as *OH Sources in Surface Waters. Annali Di Chimica, 2007, 97, 699-711.	0.6	16
220	Modelling photochemical reactions in atmospheric water droplets: An assessment of the importance of surface processes. Atmospheric Environment, 2007, 41, 3303-3314.	4.1	16
221	Glycerol Transformation Through Photocatalysis: A Possible Route to Value Added Chemicals. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	16
222	UVA irradiation induces direct phototransformation of 2,4-dinitrophenol in surface water samples. Chemosphere, 2010, 80, 759-763.	8.2	16
223	Characterization of phenazone transformation products on lightâ€activated TiO ₂ surface by highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2923-2932.	1.5	16
224	UV–vis spectral modifications of water samples under irradiation: Lake vs. subterranean water. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 85-93.	3.9	16
225	The fate of nitrogen upon nitrite irradiation: Formation of dissolved vs. gas-phase species. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 30-34.	3.9	16
226	Modeling the photochemical transformation of nitrobenzene under conditions relevant to sunlit surface waters: Reaction pathways and formation of intermediates. Chemosphere, 2016, 145, 277-283.	8.2	16
227	The complex interplay between adsorption and photoactivity in hybrids rGO/TiO2. Catalysis Today, 2018, 315, 9-18.	4.4	16
228	Heterogeneous Photocatalyzed Oxidation of Phenol, Cresols, and Fluorophenols in TiO2 Aqueous Suspensions. Advances in Chemistry Series, 1993, , 281-314.	0.6	15
229	Effects of climate change on surface-water photochemistry: a review. Environmental Science and Pollution Research, 2014, 21, 11770-11780.	5.3	15
230	Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications. Electrochimica Acta, 2017, 230, 132-140.	5.2	15
231	Effective degradation of ibuprofen through an electro-Fenton process, in the presence of zero-valent iron (ZVI-EF). Journal of Cleaner Production, 2022, 367, 132894.	9.3	15
232	Fast measurement of the consolution curve of nonionic micellar solutions: A turbidimetric method. Colloids and Surfaces, 1984, 12, 341-356.	0.9	14
233	Laser light-scattering study of nonionic micellar solutions. Journal of Colloid and Interface Science, 1985, 105, 628-634.	9.4	14
234	Determination of hydroxycarbamates in aqueous matrices by direct derivatization and GC-MS analysis in chemical ionization mode. Journal of High Resolution Chromatography, 1995, 18, 359-362.	1.4	14

#	Article	IF	CITATIONS
235	A Model to Predict the Steadyâ€State Concentration of Hydroxyl Radicals in the Surface Layer of Natural Waters. Annali Di Chimica, 2007, 97, 685-698.	0.6	14
236	Thin Film Nanocrystalline TiO ₂ Electrodes: Dependence of Flat Band Potential on pH and Anion Adsorption. Journal of Nanoscience and Nanotechnology, 2015, 15, 3348-3358.	0.9	14
237	Amine-rich carbon nitride nanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay. Nano Research, 2019, 12, 1862-1870.	10.4	14
238	Controlled Periodic Illumination Enhances Hydrogen Production by over 50% on Pt/TiO ₂ . ACS Catalysis, 2021, 11, 6484-6488.	11.2	14
239	Laser light scattering in micellar solutions. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1984, 3, 44-61.	0.4	13
240	Heterogeneous Photocatalysis: Photochemical Conversion of Inorganic Substances in the Environment: Hydrogen Sulfide, Cyanides, and Metals. , 1991, , 451-475.		13
241	Photocatalytic Processes for Destruction of Organic Water Contaminants. , 1992, , 577-608.		13
242	Cyanuric Acid-Based Eluent for Suppressed Anion Chromatography. Analytical Chemistry, 1997, 69, 3333-3338.	6.5	13
243	Modelling the photochemical generation kinetics of 2-methyl-4-chlorophenol, an intermediate of the herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in surface waters. Aquatic Ecosystem Health and Management, 2013, 16, 216-221.	0.6	13
244	Shape controllers enhance the efficiency of graphene–TiO ₂ hybrids in pollutant abatement. Nanoscale, 2016, 8, 3407-3415.	5.6	13
245	Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water. Environmental Science & Technology, 2018, 52, 6334-6342.	10.0	13
246	The generalized pseudophase model: Treatment of multiple equilibria in micellar solutions. Pure and Applied Chemistry, 1993, 65, 2573-2582.	1.9	12
247	Photodegradation of Xenobiotic Compounds Relevant to Estuarine Waters. Annali Di Chimica, 2007, 97, 135-139.	0.6	12
248	Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters. Chemosphere, 2017, 170, 124-133.	8.2	12
249	Photocatalytic Degradation of Free and Chemically Bound Silicones on Irradiated Titanium Dioxide. Langmuir, 1995, 11, 4440-4444.	3.5	11
250	Tailored properties of hematite particles with different size and shape. Dyes and Pigments, 2015, 115, 204-210.	3.7	11
251	Evaluation of gas / solid photocatalytic performance for the removal of VOCs at ppb and sub-ppb levels. Chemosphere, 2021, 272, 129636.	8.2	11
252	Phototransformation of the fungicide tebuconazole, and its predicted fate in sunlit surface freshwaters. Chemosphere, 2022, 303, 134895.	8.2	11

#	Article	IF	CITATIONS
253	Generalized two-pseudophase model for ionic reaction rates and equilibria in micellar systems: hexachloroiridate(IV)-iron(II) electron-transfer kinetics in cationic micelles. The Journal of Physical Chemistry, 1988, 92, 4670-4676.	2.9	10
254	Photodegradation of 2â€ethoxy―and 2â€butoxyethanol in the presence of semiconductor particles or organic conducting polymer. Environmental Technology Letters, 1989, 10, 301-310.	0.4	10
255	Photodegradation of Cinnamic Acid in Different Media. Journal of Dispersion Science and Technology, 2008, 29, 641-652.	2.4	10
256	Photolytic degradation of N,N-diethyl-m-toluamide in ice and water: Implications in its environmental fate. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271, 99-104.	3.9	10
257	Hexachloroiridate(IV) oxidation of benzenediols in binary aqueous solvent mixtures: Solvation and reactivity. Inorganica Chimica Acta, 1990, 173, 43-51.	2.4	9
258	Quantitative treatments of protonation equilibria shifts in micellar systems. Advances in Colloid and Interface Science, 1992, 37, 319-334.	14.7	9
259	Optimized splitless injection of hydroxylated PCBs by pressure pulse programming. Journal of High Resolution Chromatography, 1995, 18, 490-494.	1.4	9
260	Photostability of Ferulic Acid and Its Antioxidant Activity Against Linoleic Acid Peroxidation. Journal of Dispersion Science and Technology, 2008, 29, 629-640.	2.4	9
261	Modelling photochemical transformation of emerging organic pollutants in surface waters: effect of water level fluctuations following outflow or evaporation, relevant to arid and semi-arid environments. International Journal of Environmental Analytical Chemistry, 2013, 93, 1698-1717.	3.3	9
262	Photochemical processes induced by the irradiation of 4-hydroxybenzophenone in different solvents. Photochemical and Photobiological Sciences, 2015, 14, 2087-2096.	2.9	9
263	Photochemical transformation of benzotriazole, relevant to sunlit surface waters: Assessing the possible role of triplet-sensitised processes. Science of the Total Environment, 2016, 566-567, 712-721.	8.0	9
264	Portable photoreactor for on-site measurement of the activity of photocatalytic surfaces. Catalysis Today, 2020, 340, 363-368.	4.4	9
265	Effect of chlorine on photocatalytic degradation of organic contaminants. Environmental Technology (United Kingdom), 1990, 11, 919-926.	2.2	8
266	Translocation of Fenoxycarb in the Agro-ecosystem. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1318-1319.	1.3	8
267	Quantification of the Photocatalytic Self-Cleaning Ability of Non-Transparent Materials. Materials, 2019, 12, 508.	2.9	8
268	Electrospun core–sheath PAN@PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by a semiconducting support. Journal of Materials Chemistry A, 2019, 7, 26429-26441.	10.3	8
269	Photocatalytic Degradation of Organic Contaminants. , 1994, , 101-138.		8
270	Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra. Nanomaterials, 2020, 10, 1892.	4.1	7

#	Article	IF	CITATIONS
271	Photocatalytic Transformations of 1H-Benzotriazole and Benzotriazole Derivates. Nanomaterials, 2020, 10, 1835.	4.1	7
272	Putting Photocatalysis to Work. , 1986, , 673-689.		7
273	Fenton-type processes triggered by titanomagnetite for the degradation of phenol as model pollutant. , 0, 151, 117-127.		7
274	A revised photocatalytic transformation mechanism for chlorinated VOCs: Experimental evidence from C2Cl4 in the gas phase. Catalysis Today, 2018, 313, 114-121.	4.4	6
275	Fluorophores in surface freshwaters: importance, likely structures, and possible impacts of climate change. Environmental Sciences: Processes and Impacts, 2021, 23, 1429-1442.	3.5	6
276	Separation of inorganic anions by unsuppresed ion chromatography. Analytica Chimica Acta, 1986, 188, 317-319.	5.4	5
277	Ground state charge transfer complexes in microemulsions. Colloids and Surfaces, 1987, 28, 289-299.	0.9	5
278	INHIBITION OF CRYSTAL GROWTH OF CALCIUM OXALATE BY GLYCOSAMINOGLYCANES. Journal of Dispersion Science and Technology, 1993, 14, 35-46.	2.4	5
279	A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants. Chemosphere, 2016, 162, 91-98.	8.2	5
280	Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@polypyrrole nanofibers as photocatalysts for water decontamination. RSC Advances, 2021, 11, 9911-9920.	3.6	5
281	Phenol photonitration. Annali Di Chimica, 2002, 92, 919-29.	0.6	5
282	Kinetics of electron transfer between Ce(IV) nitrate and iron(II) complexes. Inorganica Chimica Acta, 1985, 110, 51-53.	2.4	4
283	Reaction kinetics as a probe for the structuring of microemulsions. Colloids and Surfaces, 1989, 35, 237-249.	0.9	4
284	REACTIVITY AND MICROSTRUCTURE IN WATER / ETHOXY ALCOHOLS / TOLUENE TERNARY SOLUTIONS. Journal of Dispersion Science and Technology, 1995, 16, 1-29.	2.4	4
285	Photostability of Octylâ€₽â€Methoxy Cinnamate in O/W Emulsions and in SLNs Vehicled in the Emulsions. Journal of Dispersion Science and Technology, 2007, 28, 1034-1043.	2.4	4
286	Influence of nitrogen speciation on the TDN measurement in fresh waters by high temperature catalytic oxidation and persulfate digestion. International Journal of Environmental Analytical Chemistry, 2016, 96, 474-489.	3.3	4
287	Organized Assemblies in Chemical Separations. , 1990, , 325-353.		4
288	PROPERTIES OF CONCENTRATED DISPERSION OF Al(OH) ₃ IN CAUSTIC SOLUTION IN THE PRESENCE OF ADDITIVES Journal of Dispersion Science and Technology, 1990, 11, 169-190.	2.4	3

#	Article	IF	CITATIONS
289	Phototransformations of Atrazine Over Different Metal Oxide Particles. , 1996, , 707-718.		3
290	Highly Photoactive Polythiophenes Obtained by Electrochemical Synthesis from Bipyridine-Containing Terthiophenes. Energies, 2019, 12, 341.	3.1	3
291	PHOTOCATALYTIC DEGRADATION OF DDT MEDIATED IN AQUEOUS SEMICONDUCTOR SLURRIES BY SIMULATED SUNLIGHT. Environmental Toxicology and Chemistry, 1989, 8, 997.	4.3	3
292	Amphiphilic Ligands in Chemical Separations. ACS Symposium Series, 1987, , 152-161.	0.5	2
293	Nanostructures in analytical chemistry. Studies in Surface Science and Catalysis, 1997, , 377-390.	1.5	1
294	Improved Photochemistry of TiO2 Inverse Opals and Some Examples. , 0, , .		1
295	Surface-Modified Photocatalysts. Handbook of Environmental Chemistry, 2013, , 23-44.	0.4	1
296	Graphitic carbon nitride-based metal-free photocatalyst. , 2021, , 449-484.		1
297	CORRELATION BETWEEN PHOTOACTIVITY AND STM TOPOGRAPHIC PARAMETERS OF TiO2 POLYCRYSTALLINE FILM. , 2004, , .		Ο
298	Sustained Production of H2O2 on Irradiated TiO2—Fluoride Systems ChemInform, 2005, 36, no.	0.0	0
299	Modelling On Photogeneration Of Hydroxyl Radical In Surface Waters And Its Reactivity Towards Pharmaceutical Wastes. , 2010, , .		0
300	Faster phototransformation of the formate (terrestrial) versus methanesulphonate (marine) markers of airborne particles: implications for modelling climate change. Environmental Chemistry Letters, 2012, 10, 395-399.	16.2	0
301	Frontispiece: Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, .	3.3	0
302	Oceanic DOC Measurements. , 2000, , 299-320.		0
303	Compound Parabolic Concentrator Technology Development To Commercial Solar Detoxification Applications. , 2000, , 427-436.		Ο
304	Mechanisms of the Photocatalytic Transformation of Organic Compounds. , 2003, , .		0
305	Effect of Electrolytes and Hydrocarbons on the Cloud Point Transition of C12E8 Solutions. , 1986, , 233-242.		0
306	Flexible Semiconducting Nanofibers Functionalized with ZnO for Enhanced and Sustainable Water Decontamination. ECS Meeting Abstracts, 2020, MA2020-01, 737-737.	0.0	0