
Alix T Coste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2146508/publications.pdf Version: 2024-02-01

ALLY T COSTE

#	Article	IF	CITATIONS
1	TAC1 , Transcriptional Activator of CDR Genes, Is a New Transcription Factor Involved in the Regulation of Candida albicans ABC Transporters CDR1 and CDR2. Eukaryotic Cell, 2004, 3, 1639-1652.	3.4	377
2	Antifungal Resistance and New Strategies to Control Fungal Infections. International Journal of Microbiology, 2012, 2012, 1-26.	2.3	346
3	A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 2006, 172, 2139-2156.	2.9	341
4	Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13722-13727.	7.1	334
5	Genotypic Evolution of Azole Resistance Mechanisms in Sequential <i>Candida albicans</i> Isolates. Eukaryotic Cell, 2007, 6, 1889-1904.	3.4	268
6	Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research, 2009, 9, 1029-1050.	2.3	234
7	CRZ1, a target of the calcineurin pathway inCandida albicans. Molecular Microbiology, 2006, 59, 1429-1451.	2.5	224
8	Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies. Journal of Virology, 2021, 95, .	3.4	200
9	Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture?. Frontiers in Microbiology, 2017, 8, 1024.	3.5	162
10	Comparison of Gene Expression Profiles of Candida albicans Azole-Resistant Clinical Isolates and Laboratory Strains Exposed to Drugs Inducing Multidrug Transporters. Antimicrobial Agents and Chemotherapy, 2004, 48, 3064-3079.	3.2	160
11	Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clinical Microbiology and Infection, 2020, 26, 1178-1182.	6.0	138
12	Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Frontiers in Microbiology, 2019, 10, 2788.	3.5	119
13	The CRH Family Coding for Cell Wall Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 40399-40411.	3.4	108
14	Genetic Dissection of Azole Resistance Mechanisms in <i>Candida albicans</i> and Their Validation in a Mouse Model of Disseminated Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 1476-1483.	3.2	96
15	Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals. Antimicrobial Agents and Chemotherapy, 2013, 57, 3182-3193.	3.2	96
16	Azole Resistance by Loss of Function of the Sterol Δ ^{5,6} -Desaturase Gene (<i>ERG3</i>) in Candida albicans Does Not Necessarily Decrease Virulence. Antimicrobial Agents and Chemotherapy, 2012, 56, 1960-1968.	3.2	85
17	RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens <i>In Vivo</i> Applied to the Fungus Candida albicans. MBio, 2015, 6, e00942-15.	4.1	78
18	Functional Analysis of <i>cis</i> - and <i>trans</i> -Acting Elements of the <i>Candida albicans CDR2</i> Promoter with a Novel Promoter Reporter System. Eukaryotic Cell, 2009, 8, 1250-1267.	3.4	76

ALIX T COSTE

#	Article	IF	CITATIONS
19	Distinct Roles of Candida albicans Drug Resistance Transcription Factors <i>TAC1</i> , <i>MRR1</i> , and <i>UPC2</i> in Virulence. Eukaryotic Cell, 2014, 13, 127-142.	3.4	76
20	Identification of <i>Aspergillus fumigatus</i> multidrug transporter genes and their potential involvement in antifungal resistance. Medical Mycology, 2016, 54, 616-627.	0.7	70
21	Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance. Microbiology (United Kingdom), 2006, 152, 3701-3722.	1.8	67
22	Comparison of SARS-CoV-2 serological tests with different antigen targets. Journal of Clinical Virology, 2021, 134, 104690.	3.1	65
23	Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2016, 60, 229-238.	3.2	59
24	Nasal Immunization of Mice with Virus-Like Particles Protects Offspring against Rotavirus Diarrhea. Journal of Virology, 2000, 74, 8966-8971.	3.4	56
25	Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance, 2019, 24, .	7.0	50
26	Species-Specific Recognition of Aspergillus fumigatus by Toll-like Receptor 1 and Toll-like Receptor 6. Journal of Infectious Diseases, 2012, 205, 944-954.	4.0	48
27	Identification and Functional Characterization of Rca1, a Transcription Factor Involved in both Antifungal Susceptibility and Host Response in Candida albicans. Eukaryotic Cell, 2012, 11, 916-931.	3.4	47
28	In Vivo Systematic Analysis of Candida albicans Zn2-Cys6 Transcription Factors Mutants for Mice Organ Colonization. PLoS ONE, 2011, 6, e26962.	2.5	44
29	Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models. Frontiers in Microbiology, 2015, 06, 367.	3.5	44
30	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
31	Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and) Tj ETQq1 1 0.	784314 rg 1.8	BT /Overlock 37
32	Novel <i>ERG11</i> and <i>TAC1b</i> Mutations Associated with Azole Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	36
33	Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. Infection, 2020, 48, 761-766.	4.7	33
34	Machine Learning Approach for Candida albicans Fluconazole Resistance Detection Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Frontiers in Microbiology, 2019, 10, 3000.	3.5	32
35	Investigating Antifungal Susceptibility in Candida Species With MALDI-TOF MS-Based Assays. Frontiers in Cellular and Infection Microbiology, 2019, 9, 19.	3.9	29
36	Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochemical Journal, 2016, 473, 1537-1552.	3.7	28

ALIX T COSTE

#	Article	IF	CITATIONS
37	Invasive Aspergillosis Due to <i>Aspergillus</i> Section <i>Usti</i> : A Multicenter Retrospective Study. Clinical Infectious Diseases, 2021, 72, 1379-1385.	5.8	28
38	First case of Candida auris in Switzerland: discussion about preventive strategies. Swiss Medical Weekly, 2018, 148, w14622.	1.6	28
39	Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging. Frontiers in Microbiology, 2017, 8, 1478.	3.5	26
40	Ability of quantitative PCR to discriminate Pneumocystis jirovecii pneumonia from colonization. Journal of Medical Microbiology, 2020, 69, 705-711.	1.8	26
41	Adaptation of a <i>Gaussia princeps</i> Luciferase reporter system in <i>Candida albicans</i> for <i>in vivo</i> detection in the <i>Galleria mellonella</i> infection model. Virulence, 2015, 6, 684-693.	4.4	23
42	Doxorubicin induces drug efflux pumps in <i>Candida albicans</i> . Medical Mycology, 2011, 49, 132-142.	0.7	20
43	A standardized toolkit for genetic engineering of CTG clade yeasts. Journal of Microbiological Methods, 2018, 144, 152-156.	1.6	19
44	First Evidence of Lysogeny in Propionibacterium freudenreichii subsp. shermanii. Applied and Environmental Microbiology, 2001, 67, 231-238.	3.1	16
45	Overview about Candida auris: What's up 12 years after its first description?. Journal De Mycologie Medicale, 2022, 32, 101248.	1.5	16
46	Deciphering the Mrr1/Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrobial Agents and Chemotherapy, 2022, 66, e0006722.	3.2	15
47	Modulation of chemokine gene expression by Shiga-toxin producing Escherichia coli belonging to various origins and serotypes. Microbes and Infection, 2008, 10, 159-165.	1.9	14
48	Evaluation of sixteen ELISA SARS-CoV-2 serological tests. Journal of Clinical Virology, 2021, 142, 104931.	3.1	14
49	Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. Journal of Antimicrobial Chemotherapy, 2020, 75, 835-848.	3.0	13
50	Nasal immunisation with Salmonella typhimurium producing rotavirus VP2 and VP6 antigens stimulates specific antibody response in serum and milk but fails to protect offspring. Vaccine, 2001, 19, 4167-4174.	3.8	12
51	Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis. Bioinformatics, 2019, 35, 2258-2266.	4.1	12
52	Serum antibody response in critically ill patients with COVID-19. Intensive Care Medicine, 2020, 46, 1921-1923.	8.2	10
53	Anti-SARS-CoV-2 Titers Predict the Severity of COVID-19. Viruses, 2022, 14, 1089.	3.3	9
54	Bacteriophages of dairy propionibacteria. Dairy Science and Technology, 1999, 79, 93-104.	0.9	7

ALIX T COSTE

#	Article	IF	CITATIONS
55	Performance evaluation of the Becton Dickinson Kiestraâ,,¢ IdentifA/SusceptA. Clinical Microbiology and Infection, 2020, 27, 1167.e9-1167.e17.	6.0	4
56	lmmunosuppressed gardener pricked by roses grows Legionella longbeachae. Lancet, The, 2020, 395, 604.	13.7	4
57	Animal Models to Study Fungal Virulence and Antifungal Drugs. , 2015, , 289-316.		4
58	Assessment of the In Vitro and In Vivo Antifungal Activity of NSC319726 against Candida auris. Microbiology Spectrum, 2021, , e0139521.	3.0	4
59	Unexpected Transcripts in Tn7 orf19.2646 C. albicans Mutant Lead to Low Fungal Burden Phenotype In vivo. Frontiers in Microbiology, 2017, 8, 873.	3.5	3
60	Insights in the molecular mechanisms of an azole stress adapted laboratory-generated Aspergillus fumigatus strain. Medical Mycology, 2021, 59, 763-772.	0.7	3
61	How Yeast Antifungal Resistance Gene Analysis Is Essential to Validate Antifungal Susceptibility Testing Systems. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	3
62	Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
63	Self-testing for SARS-CoV-2: importance of lay communication. Swiss Medical Weekly, 2021, 151, w20526.	1.6	2
64	Candida auris, an emerging and disturbing yeast. Journal De Mycologie Medicale, 2019, 29, 105-106.	1.5	1
65	One fungus, several microbes. Journal De Mycologie Medicale, 2018, 28, 413.	1.5	0
66	Voeux 2022. Journal De Mycologie Medicale, 2022, 32, 101253.	1.5	0