
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2146045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single Pulse Manipulations in Synthetic Timeâ€Frequency Space. Laser and Photonics Reviews, 2022, 16, 2100340.	8.7	8
2	Background-free single-beam coherent Raman spectroscopy assisted by air lasing. Optics Letters, 2022, 47, 481.	3.3	13
3	Roadmap on topological photonics. JPhys Photonics, 2022, 4, 032501.	4.6	56
4	Topologically protected quantum entanglement emitters. Nature Photonics, 2022, 16, 248-257.	31.4	45
5	Topological dissipation in a time-multiplexed photonic resonator network. Nature Physics, 2022, 18, 442-449.	16.7	58
6	Asymmetric Topological Valley Edge States on Siliconâ€Onâ€Insulator Platform. Laser and Photonics Reviews, 2022, 16, .	8.7	17
7	Truncation-dependent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT </mml:mi </mml:math> phase transition for the edge states of a two-dimensional non-Hermitian system. Physical Review B, 2022, 105, .	3.2	6
8	Creating boundaries along a synthetic frequency dimension. Nature Communications, 2022, 13, .	12.8	21
9	Temporal modulation brings metamaterials into new era. Light: Science and Applications, 2022, 11, .	16.6	10
10	Technologically feasible quasi-edge states and topological Bloch oscillation in the synthetic space. Optics Express, 2022, 30, 24924.	3.4	2
11	All-Optical Control of the Photonic Hall Lattice in a Pumped Waveguide Array. Physical Review Applied, 2022, 17, .	3.8	2
12	Observation of flat-band and band transition in the synthetic space. Advanced Photonics, 2022, 4, .	11.8	9
13	Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field. Nature Communications, 2022, 13, .	12.8	14
14	Bound state in a giant atom-modulated resonators system. Npj Quantum Information, 2022, 8, .	6.7	18
15	Dynamic band structure measurement in the synthetic space. Science Advances, 2021, 7, .	10.3	31
16	Photonic Meron Spin Texture in Momentum Space. , 2021, , .		0
17	Experimental Demonstration of Dynamic Band Structure Measurement along a Synthetic Dimension. , 2021, , .		0
18	Flat-Band Localization in Creutz Superradiance Lattices. Physical Review Letters, 2021, 126, 103601.	7.8	38

#	Article	IF	CITATIONS
19	Coherent control of the multiple wavelength lasing of \${m N}_2^ +\$: coherence transfer and beyond. Optica, 2021, 8, 668.	9.3	17
20	Arbitrary synthetic dimensions via multiboson dynamics on a one-dimensional lattice. Physical Review Research, 2021, 3, .	3.6	9
21	Synthetic frequency dimensions in dynamically modulated ring resonators. APL Photonics, 2021, 6, .	5.7	44
22	Photon retention in coherently excited nitrogen ions. Science Bulletin, 2021, 66, 1511-1517.	9.0	12
23	Femtosecond laser-induced quantum-beat superfluorescence of atomic oxygen in a flame. Physical Review A, 2021, 104, .	2.5	5
24	Simulating graphene dynamics in synthetic space with photonic rings. Communications Physics, 2021, 4, .	5.3	4
25	Control of photons with the effective magnetic flux in synthetic dimensions with rings including GVD. , 2021, , .		0
26	Phonon-induced anomalous gauge potential for photonic isolation in frequency space. Optica, 2021, 8, 1448.	9.3	10
27	Topological holographic quench dynamics in a synthetic frequency dimension. Light: Science and Applications, 2021, 10, 209.	16.6	20
28	A single photonic cavity with two independent physical synthetic dimensions. Science, 2020, 367, 59-64.	12.6	175
29	Single-Photon Transport in a Topological Waveguide from a Dynamically Modulated Photonic System. Physical Review Applied, 2020, 14, .	3.8	8
30	Isolated Photonic Flatband with the Effective Magnetic Flux in a Synthetic Space Including the Frequency Dimension. Laser and Photonics Reviews, 2020, 14, 2000041.	8.7	17
31	Understanding the Seeding Pulse-Induced Optical Amplification in N2 + Pumped by 800 NM Femtosecond Laser Pulses. Photonics, 2020, 7, 99.	2.0	2
32	Meron Spin Textures in Momentum Space. Physical Review Letters, 2020, 124, 106103.	7.8	44
33	Frequency Manipulations in Single-Photon Quantum Transport under Ultrastrong Driving. ACS Photonics, 2020, 7, 2010-2017.	6.6	10
34	Direct Visualizing the Spin Hall Effect of Light via Ultrahigh-Order Modes. Physical Review Letters, 2020, 124, 053902.	7.8	54
35	Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons. Photonics Research, 2020, 8, B8.	7.0	20
36	Topological phases in ring resonators: recent progress and future prospects. Nanophotonics, 2020, 9, 4473-4487.	6.0	41

#	Article	IF	CITATIONS
37	ONE-WAY TOPOLOGICAL STATES ALONG VAGUE BOUNDARIES IN SYNTHETIC FREQUENCY DIMENSIONS INCLUDING GROUP VELOCITY DISPERSION (INVITED). Progress in Electromagnetics Research, 2020, 169, 33-43.	4.4	13
38	Effective magnetic flux induced localization effect on the Lieb-type lattice in synthetic space. , 2020, , .		0
39	Topological Behaviors in Networks of Time-Multiplexed Optical Resonators. , 2020, , .		0
40	Constructing an effective Hamiltonian with local interaction in the synthetic space for photons. , 2020, , .		0
41	Experimental band structure spectroscopy along a synthetic dimension. Nature Communications, 2019, 10, 3122.	12.8	95
42	Analytical study of the spiky feature in a two-photon driven lossy ladder system. Laser Physics, 2019, 29, 105203.	1.2	1
43	Photonic Gauge Potential in One Cavity with Synthetic Frequency and Orbital Angular Momentum Dimensions. Physical Review Letters, 2019, 122, 083903.	7.8	54
44	Hidden equivalence in the collective emission from a dilute atomic cloud. Physical Review A, 2019, 99, .	2.5	0
45	Eigenstates Transition without Undergoing an Adiabatic Process. Physical Review Letters, 2019, 122, 050404.	7.8	9
46	Recent Advances in Air Lasing: A Perspective from Quantum Coherence. Advanced Quantum Technologies, 2019, 2, 1900080.	3.9	26
47	Lasing without population inversion in N2+. APL Photonics, 2019, 4, .	5.7	55
48	Tunable super- and subradiant boundary states in one-dimensional atomic arrays. Communications Physics, 2019, 2, .	5.3	13
49	Multiuser Time-Energy Entanglement Swapping Based on Dense Wavelength Division Multiplexed and Sum-Frequency Generation. Physical Review Letters, 2019, 123, 250505.	7.8	18
50	Experimental Demonstration of Dynamical Input Isolation in Nonadiabatically Modulated Photonic Cavities. ACS Photonics, 2019, 6, 162-169.	6.6	13
51	Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Optics Express, 2019, 27, 12638.	3.4	33
52	Experimental Band Structure Spectroscopy along the Synthetic Dimension. , 2019, , .		0
53	Pulse shortening in two coupled rings under amplitude modulations with parity-time symmetry. , 2019, , .		0
54	Laser without population inversion of nitrogen ions pumped by femtosecond pulses. , 2019, , .		1

#	Article	IF	CITATIONS
55	Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering. Physical Review Letters, 2018, 120, 063602.	7.8	25
56	Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. Physical Review B, 2018, 97, .	3.2	114
57	Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Physical Review B, 2018, 97, .	3.2	59
58	Pulse shortening in an actively mode-locked laser with parity-time symmetry. APL Photonics, 2018, 3, 086103.	5.7	20
59	Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. Physical Review A, 2018, 97, .	2.5	34
60	Synthetic dimension in photonics. Optica, 2018, 5, 1396.	9.3	276
61	Achieving Topological Photonics in a Synthetic Space with Dynamically Modulated Ring Resonators. , 2018, , .		0
62	Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. , 2018, , .		1
63	Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation. Physical Review A, 2017, 95, .	2.5	10
64	Frequency-axis light transport and topological effects in dynamic photonic structures. Proceedings of SPIE, 2017, , .	0.8	0
65	Directional coherent light via intensity-induced sideband emission. Light: Science and Applications, 2017, 6, e16262-e16262.	16.6	10
66	Quantum superradiant amplification in rubidium vapors: gain assessment. Proceedings of SPIE, 2017, , .	0.8	0
67	Creating anyons from photons using a nonlinear resonator lattice subject to dynamic modulation. Physical Review A, 2017, 96, .	2.5	7
68	Photonic Weyl Point in a 2D Resonator Array with a Synthetic Frequency Dimension. , 2017, , .		0
69	Achieving the gauge potential in a synthetic space using coherent Raman sideband generation. , 2017, , .		Ο
70	Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nature Communications, 2016, 7, 13731.	12.8	170
71	Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica, 2016, 3, 1014.	9.3	79
72	Time reversal of a wave packet with temporal modulation of gauge potential. Physical Review B, 2016, 94, .	3.2	17

#	Article	IF	CITATIONS
73	Photonic gauge potential in a system with a synthetic frequency dimension. Optics Letters, 2016, 41, 741.	3.3	195
74	Evidence of Anderson localization effects in random Raman lasing. , 2016, , .		4
75	Achieving the gauge potential for the photon in a synthetic space. , 2016, , .		1
76	Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime. Physical Review A, 2015, 92, .	2.5	26
77	Recent advances on non-reciprocal light manipulation from dynamic modulation. , 2015, , .		0
78	Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov–Bohm effect. Optics Letters, 2015, 40, 5140.	3.3	46
79	Three-Dimensional Dynamic Localization of Light from a Time-Dependent Effective Gauge Field for Photons. Physical Review Letters, 2015, 114, 243901.	7.8	36
80	Observing the transition from yoked superfluorescence to superradiance. Optics Communications, 2015, 351, 45-49.	2.1	12
81	Topological phase transitions in superradiance lattices. Optica, 2015, 2, 712.	9.3	38
82	Using time-dependent effective gauge field for photons to achieve dynamic localization of light. , 2015, , .		0
83	Transient lasing without inversion via forbidden and virtual transitions. Physical Review A, 2014, 89, .	2.5	21
84	Sideband generation of transient lasing without population inversion. Physical Review A, 2014, 90, .	2.5	5
85	Transient lasing without inversion. New Journal of Physics, 2013, 15, 053044.	2.9	29
86	Quantum Amplification by Superradiant Emission of Radiation. Physical Review X, 2013, 3, .	8.9	42
87	Theoretical analysis of the coherence-brightened laser in air. Physical Review A, 2013, 87, .	2.5	35
88	Plasma-assisted coherent backscattering for standoff spectroscopy. Optics Letters, 2012, 37, 987.	3.3	11
89	Gain without population inversion in a yoked superfluorescence scheme. Physical Review A, 2012, 85, .	2.5	10
90	Observing Superradiant Decay of Excited-State Helium Atoms Inside Helium Plasma. Physical Review Letters, 2012, 109, 093604.	7.8	21

#	Article	IF	CITATIONS
91	Coherence brightened laser source for atmospheric remote sensing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15185-15190.	7.1	65
92	Tracking molecular wave packets in cesium dimers by coherent Raman scattering. Physical Review A, 2012, 86, .	2.5	2
93	Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption. Applied Physics Letters, 2012, 101, 091107.	3.3	3
94	Coherent Raman Umklappscattering. Laser Physics Letters, 2011, 8, 736-741.	1.4	24
95	Quantum correlations and violation of the Bell inequality induced by an external field in a two-photon radiative cascade. Physical Review A, 2011, 83, .	2.5	2
96	Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission. Physical Review A, 2010, 81, .	2.5	12
97	Nanosphere monolayer-templated, ion-assisted nanofeature etching in dielectric materials: a numerical simulation of nanoscale ion flux topography. Nanotechnology, 2008, 19, 155304.	2.6	16
98	Low temperature deposition of nanocrystalline TiO2films: enhancement of nanocrystal formation by energetic particle bombardment. Journal Physics D: Applied Physics, 2007, 40, 219-226.	2.8	31
99	Ion current distribution during deposition of dielectric material using an insulating porous alumina template. Journal Physics D: Applied Physics, 2007, 40, 7766-7770.	2.8	4
100	Plasma-controlled nanocrystallinity and phase composition of TiO2: A smart way to enhance biomimetic response. Journal of Biomedical Materials Research - Part A, 2007, 81A, 453-464.	4.0	42
101	Templated iâ€PVD of Metallic Nanodot Arrays. Plasma Processes and Polymers, 2007, 4, 612-620.	3.0	12
102	The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells. Surface and Coatings Technology, 2006, 200, 6155-6160.	4.8	70