
Michel-Pierre Faucon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Earthworm communities and microbial metabolic activity and diversity under conventional, feed and biogas cropping systems as affected by tillage practices. Applied Soil Ecology, 2022, 169, 104232.	4.3	9
2	Root traits of crop species contributing to soil shear strength. Geoderma, 2022, 409, 115642.	5.1	4
3	New insights into sorption and desorption of organic phosphorus on goethite, gibbsite, kaolinite and montmorillonite. Applied Geochemistry, 2022, 143, 105378.	3.0	9
4	Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant and Soil, 2021, 461, 137-150.	3.7	32
5	Traitâ€based sediment retention and runoff control by herbaceous vegetation in agricultural catchments: A review. Land Degradation and Development, 2021, 32, 1077-1089.	3.9	19
6	A shift from phenol to silicaâ€based leaf defences during longâ€ŧerm soil and ecosystem development. Ecology Letters, 2021, 24, 984-995.	6.4	27
7	Interactions between belowâ€ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. Functional Ecology, 2021, 35, 1603-1619.	3.6	15
8	Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences. Biogeochemistry, 2021, 156, 335-350.	3.5	4
9	Element Case Studies: Cobalt. Mineral Resource Reviews, 2021, , 385-391.	1.5	0
10	Unravelling the Role of Rhizosphere Microbiome and Root Traits in Organic Phosphorus Mobilization for Sustainable Phosphorus Fertilization. A Review. Agronomy, 2021, 11, 2267.	3.0	17
11	Contrasting Response of Nutrient Acquisition Traits in Wheat Grown on Bisphenol A-Contaminated Soils. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	10
12	Ecological niche distribution along soil toxicity gradients: Bridging theoretical expectations and metallophyte conservation. Ecological Modelling, 2020, 415, 108861.	2.5	3
13	Relationships between Root Traits and Soil Physical Properties after Field Traffic from the Perspective of Soil Compaction Mitigation. Agronomy, 2020, 10, 1697.	3.0	11
14	Plant–Soil Interactions as Drivers of the Structure and Functions of Plant Communities. Diversity, 2020, 12, 452.	1.7	6
15	Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 2020, 369, 1245-1248.	12.6	57
16	Functional Diversity Effects of Vegetation on Runoff to Design Herbaceous Hedges for Sediment Retention. Diversity, 2020, 12, 131.	1.7	3
17	Earthworms (Lumbricus terrestris L.) Mediate the Fertilizing Effect of Frass. Agronomy, 2020, 10, 783.	3.0	14
18	Plant Functional Traits on Tropical Ultramafic Habitats Affected by Fire and Mining: Insights for Reclamation. Diversity, 2020, 12, 248.	1.7	9

MICHEL-PIERRE FAUCON

#	Article	IF	CITATIONS
19	Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Scientific Reports, 2020, 10, 4659.	3.3	73
20	Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere. Sustainability, 2020, 12, 2212.	3.2	13
21	Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges. Scientific Reports, 2019, 9, 14878.	3.3	35
22	Effects of plant traits and their divergence on runoff and sediment retention in herbaceous vegetation. Plant and Soil, 2019, 441, 511-524.	3.7	19
23	Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia). Plant and Soil, 2019, 440, 201-218.	3.7	2
24	Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Applied Soil Ecology, 2019, 137, 178-186.	4.3	34
25	Tolerance and accumulation of cobalt in three species of Haumaniastrum and the influence of copper. Environmental and Experimental Botany, 2018, 149, 27-33.	4.2	24
26	Variation in copper and cobalt tolerance and accumulation among six populations of the facultative metallophyte Anisopappus chinensis (Asteraceae). Environmental and Experimental Botany, 2018, 153, 1-9.	4.2	8
27	Element Case Studies: Cobalt and Copper. Mineral Resource Reviews, 2018, , 233-239.	1.5	6
28	Functional traits of a broad-niched metallophyte along a toxicity gradient: disentangling intra and inter-population variation. Environmental and Experimental Botany, 2018, 156, 240-247.	4.2	2
29	Response of Organic Matter Decomposition to No-Tillage Adoption Evaluated by the Tea Bag Technique. Soil Systems, 2018, 2, 42.	2.6	19
30	Effect of Cadmium, Copper and Lead on the Growth of Rice in the Coal Mining Region of Quang Ninh, Cam-Pha (Vietnam). Sustainability, 2018, 10, 1758.	3.2	22
31	Effect of rare earth elements on rice plant growth. Chemical Geology, 2018, 489, 28-37.	3.3	35
32	Plant functional trait effects on runoff to design herbaceous hedges for soil erosion control. Ecological Engineering, 2018, 118, 143-151.	3.6	51
33	Plant Functional Traits: Soil and Ecosystem Services. Trends in Plant Science, 2017, 22, 385-394.	8.8	311
34	Functional traits of a facultative metallophyte from tropical Africa: population variation and plasticity in response to cobalt. Environmental and Experimental Botany, 2017, 136, 1-8.	4.2	9
35	Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation. Plant and Soil, 2017, 413, 261-273.	3.7	10
36	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 2017, 213, 537-551.	7.3	190

#	Article	IF	CITATIONS
37	Ullmann reaction through ecocatalysis: insights from bioresource and synthetic potential. RSC Advances, 2016, 6, 59550-59564.	3.6	31
38	Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere, 2016, 146, 75-84.	8.2	43
39	Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant and Soil, 2016, 403, 153-165.	3.7	26
40	Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic) Tj ETQq0 0 0	rgBT /Ove 3.0	rlock 10 Tf 50
41	Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo. Environmental Science and Pollution Research, 2016, 23, 13693-13705.	5.3	31
42	Comparison of translocation methods to conserve metallophyte communities in the Southeastern D.R. Congo. Environmental Science and Pollution Research, 2016, 23, 13681-13692.	5.3	22
43	Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of) Tj ETQq1	1 0.78431 3.2	4 rgBT /Over
44	Advances and Perspectives to Improve the Phosphorus Availability in Cropping Systems for Agroecological Phosphorus Management. Advances in Agronomy, 2015, 134, 51-79.	5.2	76
45	Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecological Engineering, 2015, 82, 214-221.	3.6	46
46	Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecological Engineering, 2015, 82, 81-90.	3.6	34
47	Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant and Soil, 2014, 379, 275-287.	3.7	44
48	Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant and Soil, 2013, 373, 455-469.	3.7	30
49	Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, D.R.Congo. Plant Ecology and Evolution, 2013, 146, 173-182.	0.7	18
50	Low Caryopsis Production of the Toothbrush Grass (Microchloa altera) from Katanga (DR Congo) Could Limit the Revegetation of Trace Metal Contaminated Lands by Seeding. Ecological Restoration, 2013, 31, 240-244.	0.5	0
51	Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botany, 2012, 84, 11-16.	4.2	34
52	Investigating the Vegetation–Soil Relationships on the Copper–Cobalt Rock Outcrops of Katanga (D. R.) Tj E	TQq0 0 0 I	gBT /Overloo

53	Ecology and Hybridization Potential of Two Sympatric Metallophytes, the Narrow Endemic <i><scp>C</scp>repidorhopalon perennis</i> (<scp>L</scp> inderniaceae) and its More Widespread Congener <i><scp>C</scp>. tenuis</i> . Biotropica, 2012, 44, 454-462.	1.6	15
54	May Rare Metallophytes Benefit from Disturbed Soils Following Mining Activity? The Case of the <i>Crepidorhopalon tenuis</i> in Katanga (D. R. Congo). Restoration Ecology, 2011, 19, 333-343.	2.9	35

#	Article	IF	CITATIONS
55	Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecology and Evolution, 2010, 143, 5-18.	0.7	49
56	Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant and Soil, 2010, 328, 235-244.	3.7	50
57	Genetic architecture of zinc hyperaccumulation in <i>Arabidopsis halleri</i> : the essential role of QTLâ€f×â€fenvironment interactions. New Phytologist, 2010, 187, 355-367.	7.3	81
58	Phytostabilisation of Copper-Contaminated Soil in Katanga: An Experiment with Three Native Grasses and Two Amendments. International Journal of Phytoremediation, 2010, 12, 616-632.	3.1	45
59	Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil, 2009, 317, 201-212.	3.7	43
60	Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant and Soil, 2007, 301, 29-36.	3.7	127