Simon Fleischmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143416/publications.pdf

Version: 2024-02-01

41 papers

3,058 citations

218677 26 h-index 39 g-index

42 all docs 42 docs citations

times ranked

42

3327 citing authors

#	Article	IF	CITATIONS
1	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	47.7	1,020
2	MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 18265-18271.	10.3	358
3	Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. Journal of Materials Chemistry A, 2017, 5, 15640-15649.	10.3	167
4	Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 2017, 122, 329-335.	10.3	149
5	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 2022, 7, 222-228.	39.5	130
6	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	32.8	111
7	Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water. Electrochimica Acta, 2017, 224, 314-328.	5.2	98
8	Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. ACS Energy Letters, 2019, 4, 2805-2812.	17.4	88
9	Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. Journal of Materials Chemistry A, 2017, 5, 12520-12527.	10.3	80
10	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	14.9	64
11	Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes. Journal of Materials Chemistry A, 2016, 4, 16003-16016.	10.3	51
12	Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon, 2017, 117, 46-54.	10.3	50
13	Asymmetric tin–vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustainable Energy and Fuels, 2017, 1, 299-307.	4.9	49
14	Enhanced Electrochemical Energy Storage by Nanoscopic Decoration of Endohedral and Exohedral Carbon with Vanadium Oxide via Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 2802-2813.	6.7	44
15	Fast and stable lithium-ion storage kinetics of anatase titanium dioxide/carbon onion hybrid electrodes. Journal of Materials Chemistry A, 2018, 6, 9480-9488.	10.3	43
16	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes. Journal of Materials Chemistry A, 2017, 5, 13039-13051.	10.3	41
17	Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, 12143-12153.	3.3	37
18	Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18675-18684.	8.0	37

#	Article	IF	CITATIONS
19	Carbon onion/sulfur hybrid cathodes <i>via</i> inverse vulcanization for lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 133-146.	4.9	36
20	Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries. Sustainable Energy and Fuels, 2017, 1, 84-94.	4.9	34
21	Tailored Mesoporous Carbon/Vanadium Pentoxide Hybrid Electrodes for High Power Pseudocapacitive Lithium and Sodium Intercalation. Chemistry of Materials, 2017, 29, 8653-8662.	6.7	34
22	Potentialâ€Dependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. ChemSusChem, 2018, 11, 2091-2100.	6.8	33
23	High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water. RSC Advances, 2016, 6, 106081-106089.	3.6	32
24	Electrochemical Reactivity under Confinement Enabled by Molecularly Pillared 2D and Layered Materials. Chemistry of Materials, 2020, 32, 3325-3334.	6.7	32
25	Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 18899-18909.	10.3	30
26	Binderâ€Free Hybrid Titanium–Niobium Oxide/Carbon Nanofiber Mats for Lithiumâ€Ion Battery Electrodes. ChemSusChem, 2018, 11, 159-170.	6.8	30
27	Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. Journal of Materials Chemistry A, 2020, 8, 412-421.	10.3	28
28	Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithiumâ€ion Battery Anodes with High Areal and Volumetric Capacity. Chemistry - A European Journal, 2018, 24, 6358-6363.	3.3	27
29	Electrospun Hybrid Vanadium Oxide/Carbon Fiber Mats for Lithium- and Sodium-Ion Battery Electrodes. ACS Applied Energy Materials, 2018, 1, 3790-3801.	5.1	21
30	Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 2792-2801.	10.3	19
31	Fast Proton Insertion in Layered H $<$ sub $>$ 2 $<$ /sub $>$ W $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 7 $<$ /sub $>$ via Selective Etching of an Aurivillius Phase. Advanced Energy Materials, 2021, 11, .	19.5	16
32	Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. RSC Advances, 2016, 6, 107163-107179.	3.6	14
33	Understanding Interlayer Deprotonation of Hydrogen Titanium Oxide for High-Power Electrochemical Energy Storage. ACS Applied Energy Materials, 2019, 2, 3633-3641.	5.1	13
34	Electrochemically Induced Deformation Determines the Rate of Lithium Intercalation in Bulk TiS ₂ . ACS Energy Letters, 2021, 6, 4173-4178.	17.4	11
35	Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithiumâ€lon Batteries. Batteries and Supercaps, 2019, 2, 74-82.	4.7	10
36	Gyroidal Niobium Sulfide/Carbon Hybrid Monoliths for Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 668-672.	4.7	8

#	Article	IF	CITATIONS
37	Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustainable Energy and Fuels, 2019, 3, 1776-1789.	4.9	7
38	Structural and chemical characterization of MoO ₂ /MoS ₂ triple-hybrid materials using electron microscopy in up to three dimensions. Nanoscale Advances, 2021, 3, 1067-1076.	4.6	2
39	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170246.	14.9	2
40	Frontispiece: Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, .	3.3	0
41	Effects of Interlayer Properties on Electrochemical Ion Intercalation and Electrosorption in Layered and 2D Electrode Materials. ECS Meeting Abstracts, 2022, MA2022-01, 74-74.	0.0	0