Anja Lux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2143333/publications.pdf Version: 2024-02-01

ΔΝΙΑ ΕΠΥ

#	Article	IF	CITATIONS
1	Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nature Immunology, 2017, 18, 104-113.	14.5	274
2	Impact of Immune Complex Size and Glycosylation on IgG Binding to Human FcÎ ³ Rs. Journal of Immunology, 2013, 190, 4315-4323.	0.8	234
3	Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nature Communications, 2015, 6, 6651.	12.8	212
4	FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19396-19401.	7.1	168
5	FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends in Immunology, 2015, 36, 325-336.	6.8	157
6	Inflammatory monocytes and FcÎ ³ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10729-10734.	7.1	153
7	Monocyte Subsets Responsible for Immunoglobulin G-Dependent Effector Functions InÂVivo. Immunity, 2011, 35, 932-944.	14.3	127
8	lgG Fc domains that bind C1q but not effector $Fc\hat{1}^3$ receptors delineate the importance of complement-mediated effector functions. Nature Immunology, 2017, 18, 889-898.	14.5	122
9	A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors. Cell Reports, 2015, 13, 2376-2385.	6.4	86
10	Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proceedings of the United States of America, 2011, 108, 18772-18777.	7.1	74
11	The Kaposi's Sarcoma-associated Herpesvirus-encoded vIRF-3 Inhibits Cellular IRF-5. Journal of Biological Chemistry, 2009, 284, 8525-8538.	3.4	64
12	Bone―and Cartilageâ€Protective Effects of a Monoclonal Antibody Against Colonyâ€Stimulating Factor 1 Receptor in Experimental Arthritis. Arthritis and Rheumatology, 2014, 66, 2989-3000.	5.6	58
13	Suppression of FcÎ ³ -Receptor-Mediated Antibody Effector Function during Persistent Viral Infection. Immunity, 2015, 42, 379-390.	14.3	58
14	A Humanized Mouse Identifies the Bone Marrow as a Niche with Low Therapeutic IgG Activity. Cell Reports, 2014, 7, 236-248.	6.4	47
15	lgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. European Journal of Immunology, 2017, 47, 2070-2079.	2.9	41
16	Pathways Responsible for Human Autoantibody and Therapeutic Intravenous IgG Activity in Humanized Mice. Cell Reports, 2015, 13, 610-620.	6.4	38
17	How Immunoglobulin G Antibodies Kill Target Cells. Advances in Immunology, 2014, 124, 67-94.	2.2	37
18	Dissecting FcÎ ³ R Regulation through a Multivalent Binding Model. Cell Systems, 2018, 7, 41-48.e5.	6.2	28

Anja Lux

#	Article	IF	CITATIONS
19	Reply to — IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nature Reviews Immunology, 2014, 14, 349-349.	22.7	27
20	FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Review of Clinical Immunology, 2012, 8, 243-254.	3.0	26
21	Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo. Frontiers in Immunology, 2019, 10, 3024.	4.8	23
22	The role of FcÎ ³ receptors in murine autoimmune thrombocytopenia. Annals of Hematology, 2010, 89, 25-30.	1.8	21
23	The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Reports, 2019, 29, 3033-3046.e4.	6.4	18
24	Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Frontiers in Immunology, 2020, 11, 1320.	4.8	18
25	Targeting B cells and autoantibodies in the therapy of autoimmune diseases. Seminars in Immunopathology, 2014, 36, 289-299.	6.1	13
26	Complement-Dependent Activity of CD20-Specific IgG Correlates With Bivalent Antigen Binding and C1q Binding Strength. Frontiers in Immunology, 2020, 11, 609941.	4.8	13
27	Expression Profiling and Glycan Engineering of IgG Subclass 1–4 in Nicotiana benthamiana. Frontiers in Bioengineering and Biotechnology, 2020, 8, 825.	4.1	12
28	Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy. Haematologica, 2020, 106, haematol.2020.251371.	3.5	11
29	Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 1352-1365.	2.8	10
30	Detection of Experimental and Clinical Immune Complexes by Measuring SHIP-1 Recruitment to the Inhibitory Fcl ³ RIIB. Journal of Immunology, 2018, 200, 1937-1950.	0.8	8
31	Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. ELife, 2020, 9, .	6.0	8
32	No Need for Constant Help: Human IgG2 Antibodies Have an Autonomous Agonistic Activity for Immunotherapy of Cancer. Cancer Cell, 2015, 27, 10-11.	16.8	7
33	Targeting B cells in the pre-phase of systemic autoimmunity globally interferes with autoimmune pathology. IScience, 2021, 24, 103076.	4.1	6
34	B ell modulation with anti D79b antibodies ameliorates experimental autoimmune encephalitis in mice. European Journal of Immunology, 2022, 52, 656-668.	2.9	0