
Qingsong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2142022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental magnetism: Principles and applications. Reviews of Geophysics, 2012, 50, .	23.0	491
2	Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15, 4958-4983.	2.5	419
3	Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 2005, 161, 102-112.	2.4	270
4	Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess–Paleosol Sequence, Chinese Loess Plateau. Soil Science Society of America Journal, 2007, 71, 1570-1578.	2.2	182
5	What do the HIRM and <i>S</i> â€ratio really measure in environmental magnetism?. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	173
6	Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	155
7	Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. Journal of Geophysical Research, 2005, 110, .	3.3	150
8	Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research, 2005, 110, .	3.3	133
9	Tracing the provenance of fineâ€grained dust deposited on the central Chinese Loess Plateau. Geophysical Research Letters, 2008, 35, .	4.0	132
10	East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	119
11	Diverse manifestations of the mid-Pleistocene climate transition. Nature Communications, 2019, 10, 352.	12.8	118
12	Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Science Advances, 2017, 3, e1600762.	10.3	114
13	Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth and Planetary Science Letters, 2013, 369-370, 271-283.	4.4	95
14	Mechanism of the magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research, 2004, 109, .	3.3	89
15	Magnetite magnetosome and fragmental chain formation of <i>Magnetospirillum magneticum</i> AMB-1: transmission electron microscopy and magnetic observations. Geophysical Journal International, 2009, 177, 33-42.	2.4	80
16	Magnetic anisotropy, magnetostatic interactions and identification of magnetofossils. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	78
17	Effects of crystallite size on the structure and magnetism of ferrihydrite. Environmental Science: Nano, 2016, 3, 190-202.	4.3	77
18	An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. Journal of Geophysical Research, 2003, 108, .	3.3	76

#	Article	IF	CITATIONS
19	Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in northwestern Spain. European Journal of Soil Science, 2010, 61, 161-173.	3.9	76
20	Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophysical Research Letters, 2004, 31, .	4.0	72
21	Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Global and Planetary Change, 2013, 110, 368-378.	3.5	69
22	Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters, 2018, 486, 41-53.	4.4	59
23	Magnetostratigraphy of Chinese loess–paleosol sequences. Earth-Science Reviews, 2015, 150, 139-167.	9.1	57
24	Geomagnetic excursions recorded in Chinese Loess in the last 70,000 years. Geophysical Research Letters, 1999, 26, 505-508.	4.0	55
25	Magnetism of intermediate hydromaghemite in the transformation of 2â€line ferrihydrite into hematite and its paleoenvironmental implications. Journal of Geophysical Research, 2008, 113, .	3.3	54
26	Environmental magnetic studies of sediment cores from Gonghai Lake: implications for monsoon evolution in North China during the late glacial and Holocene. Journal of Paleolimnology, 2013, 49, 447-464.	1.6	53
27	Characteristic low-temperature magnetic properties of aluminous goethite [α-(Fe, Al)OOH] explained. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	52
28	Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth and Planetary Science Letters, 2011, 307, 253-265.	4.4	49
29	New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophysical Journal International, 2004, 158, 506-514.	2.4	48
30	Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. Journal of Geophysical Research, 2004, 109, .	3.3	47
31	Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology. Clay Minerals, 2011, 46, 137-147.	0.6	46
32	Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nature Communications, 2018, 9, 3026.	12.8	46
33	An Integrated Study of the Eolian Dust in Pelagic Sediments From the North Pacific Ocean Based on Environmental Magnetism, Transmission Electron Microscopy, and Diffuse Reflectance Spectroscopy. Journal of Geophysical Research: Solid Earth, 2018, 123, 3358-3376.	3.4	45
34	Atmospheric dust variability from Arabia and China over the last 500,000 years. Quaternary Science Reviews, 2011, 30, 3537-3541.	3.0	44
35	Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition. Nature Communications, 2020, 11, 5249.	12.8	44
36	A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophysical Research Letters, 2002, 29, 6-1.	4.0	43

#	Article	IF	CITATIONS
37	A new mechanism for the magnetic enhancement of hematite during heating: the role of clay minerals. Studia Geophysica Et Geodaetica, 2012, 56, 845-860.	0.5	43
38	Magnetostratigraphy of a greigiteâ€bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation. Journal of Geophysical Research: Solid Earth, 2014, 119, 7425-7441.	3.4	42
39	Reliability of geomagnetic secular variations recorded in a loess section at Lingtai, north-central China. Science in China Series D: Earth Sciences, 2000, 43, 1-9.	0.9	40
40	Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea. Quaternary Science Reviews, 2016, 144, 1-15.	3.0	40
41	Are Chinese loess deposits essentially continuous?. Geophysical Research Letters, 2007, 34, .	4.0	38
42	Magnetic discrimination between Alâ€substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance. Journal of Geophysical Research, 2012, 117, .	3.3	37
43	The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars. Reviews of Geophysics, 2022, 60, .	23.0	37
44	East Asian monsoon evolution since the late Miocene from the South China Sea. Earth and Planetary Science Letters, 2020, 530, 115960.	4.4	35
45	A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism. Geochemistry, Geophysics, Geosystems, 2013, 14, 3887-3907.	2.5	34
46	Late Miocene-early Pleistocene paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophysical Research Letters, 2014, 41, 2163-2168.	4.0	33
47	Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior?. Geology, 2020, 48, 77-81.	4.4	32
48	A recording phase lag between ocean and continent climate changes: Constrained by the Matuyama/Brunhes polarity boundary. Science Bulletin, 1998, 43, 1593-1599.	1.7	31
49	Effects of the coreâ€shell structure on the magnetic properties of partially oxidized magnetite grains: Experimental and micromagnetic investigations. Geochemistry, Geophysics, Geosystems, 2014, 15, 2021-2038.	2.5	31
50	Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary. Nature Communications, 2021, 12, 6935.	12.8	31
51	Revisiting the stratigraphic position of the Matuyama–Brunhes geomagnetic polarity boundary in Chinese loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 309-317.	2.3	30
52	Magnetic characteristics of synthetic pseudoâ€singleâ€domain and multiâ€domain greigite (Fe ₃ S ₄). Geophysical Research Letters, 2007, 34, .	4.0	28
53	Magnetic characterization of noninteracting, randomly oriented, nanometerâ€scale ferrimagnetic particles. Journal of Geophysical Research, 2010, 115, .	3.3	28
54	Reliability of the natural remanent magnetization recorded in Chinese loess. Journal of Geophysical Research, 2010, 115, .	3.3	28

#	Article	IF	CITATIONS
55	Estimating the concentration of aluminumâ€substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations. Journal of Geophysical Research: Solid Earth, 2016, 121, 4180-4194.	3.4	28
56	A new model for transformation of ferrihydrite to hematite in soils and sediments. Geology, 0, , .	4.4	27
57	Contrasting behavior of hematite and goethite within paleosol S5 of the Luochuan profile, Chinese Loess Plateau. Geophysical Research Letters, 2006, 33, .	4.0	26
58	No apparent lock-in depth of the Laschamp geomagnetic excursion: Evidence from the Malan loess. Science in China Series D: Earth Sciences, 2006, 49, 960-967.	0.9	26
59	Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain. Frontiers in Microbiology, 2014, 5, 71.	3.5	26
60	Mechanism of the parasitic remanence of aluminous goethite [α-(Fe, Al)OOH]. Journal of Geophysical Research, 2004, 109, .	3.3	24
61	Chemical overprint on the natural remanent magnetization of a subtropical red soil sequence in the Bose Basin, southern China. Geophysical Research Letters, 2007, 34, .	4.0	24
62	Ferro and antiferromagnetism of ultrafineâ€grained hematite. Geochemistry, Geophysics, Geosystems, 2014, 15, 2699-2712.	2.5	23
63	Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance. Geophysical Journal International, 2015, 200, 130-143.	2.4	23
64	Magnetism of a red soil core derived from basalt, northern Hainan Island, China: Volcanic ash versus pedogenesis. Journal of Geophysical Research: Solid Earth, 2017, 122, 1677-1696.	3.4	23
65	Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods. Geophysical Journal International, 2014, 196, 131-144.	2.4	22
66	Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism. Earth, Planets and Space, 2015, 67, .	2.5	21
67	A review of current and emerging approaches for Quaternary marine sediment dating. Science of the Total Environment, 2021, 780, 146522.	8.0	21
68	Anisotropy of magnetic susceptibility of Hannuoba basalt, northern China: Constraints on the vent position of the lava sequences. Geophysical Research Letters, 2003, 30, .	4.0	18
69	Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite. Scientific Reports, 2016, 6, 30395.	3.3	18
70	Magnetism of Alâ€substituted magnetite reduced from Alâ€hematite. Journal of Geophysical Research: Solid Earth, 2016, 121, 4195-4210.	3.4	18
71	Timing and lockâ€in effect of the Laschamp geomagnetic excursion in Chinese Loess. Geochemistry, Geophysics, Geosystems, 2013, 14, 4952-4961.	2.5	17
72	Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea. Marine Geology, 2017, 394, 82-97.	2.1	17

#	Article	IF	CITATIONS
73	Multidecadally resolved polarity oscillations during a geomagnetic excursion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8913-8918.	7.1	16
74	Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO ₂ world. Science Advances, 2021, 7, eabk2318.	10.3	16
75	Mechanism of variations in environmental magnetic proxies of lake sediments from Nam Co, Tibet during the Holocene. Science Bulletin, 2013, 58, 1568-1578.	1.7	15
76	Effects of the grain size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles. Science China Earth Sciences, 2010, 53, 1071-1078.	5.2	13
77	Correlation patterns between magnetic parameters and heavy metals of core sediments in the Yellow River Estuary and their environmental implications. Marine Pollution Bulletin, 2020, 160, 111590.	5.0	13
78	Magnetic study of the UHP eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. Journal of Geophysical Research, 2009, 114, .	3.3	12
79	Do non-dipole geomagnetic field behaviors persistently exist in the subarctic Pacific Ocean over the past 140Åka?. Science Bulletin, 2020, 65, 1505-1507.	9.0	10
80	A magnetic approach to unravelling the paleoenvironmental significance of nanometer-sized Fe hydroxide in NW Pacific ferromanganese deposits. Earth and Planetary Science Letters, 2021, 565, 116945.	4.4	10
81	The effects of secondary mineral formation on Coe-type paleointensity determinations: Theory and simulation. Geochemistry, Geophysics, Geosystems, 2014, 15, 1215-1234.	2.5	9
82	Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River Delta, China. Geophysical Journal International, 2016, 204, 948-960.	2.4	9
83	Review of recent developments in aeolian dust signals of sediments from the North Pacific Ocean based on magnetic minerals. Geological Magazine, 2020, 157, 790-805.	1.5	9
84	Magnetotactic Bacterial Activity in the North Pacific Ocean and Its Relationship to Asian Dust Inputs and Primary Productivity Since 8.0ÂMa. Geophysical Research Letters, 2021, 48, e2021GL094687.	4.0	9
85	Low-temperature magnetic properties of horse spleen ferritin. Science Bulletin, 2010, 55, 3174-3180.	1.7	8
86	Magnetic properties of two soil profiles from Yan'an, Shaanxi Province and their implications for paleorainfall reconstruction. Science China Earth Sciences, 2014, 57, 719-728.	5.2	8
87	Variations of Earth Magnetic Field Intensity for the Past 5ÂMyr Derived From Marine Magnetic Anomalies in a Slowâ€toâ€Intermediate Spreading South Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 2018, 123, 7321-7337.	3.4	8
88	Magnetic Domain State and Anisotropy in Hematite (<i>α</i> â€Fe ₂ O ₃) From Firstâ€Order Reversal Curve Diagrams. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB023027.	3.4	8
89	Abyssal Manganese Nodule Recording of Global Cooling and Tibetan Plateau Uplift Impacts on Asian Aridification. Geophysical Research Letters, 2022, 49, .	4.0	8
90	Contrasting Sensitivity of Weathering Proxies to Quaternary Climate and Sea‣evel Fluctuations on the South China Sea. Geophysical Research Letters, 2021, 48, .	4.0	8

#	Article	IF	CITATIONS
91	Thermally induced inversion of Al-substituted titanomagnetite in basalts: Evidence for partial self-reversal. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	7
92	Magnetic study of mafic granulite xenoliths from the Hannuoba basalt, north China. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	7
93	Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust. Journal of Earth Science (Wuhan, China), 2013, 24, 12-28.	3.2	7
94	Effects of the grain size distribution on magnetic properties of magnetite: constraints from micromagnetic modeling. Science Bulletin, 2014, 59, 4763-4773.	1.7	7
95	A Thick Negative Polarity Anomaly in a Sediment Core From the Central Arctic Ocean: Geomagnetic Excursion Versus Reversal. Journal of Geophysical Research: Solid Earth, 2019, 124, 10687-10703.	3.4	7
96	A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean. Quaternary Science Reviews, 2020, 248, 106577.	3.0	7
97	Quantifying Contributions of Magnetic Inclusions Within Silicates to Marine Sediments: A Dissolution Approach to Isolating Volcanic Signals for Improved Paleoenvironmental Reconstruction. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022680.	3.4	7
98	Coupled Impacts of Atmospheric Circulation and Seaâ€ice on Late Pleistocene Terrigenous Sediment Dynamics in the Subarctic Pacific Ocean. Geophysical Research Letters, 2021, 48, e2021GL095312.	4.0	7
99	Identification of the thick-layer greigite in sediments of the South Yellow Sea and its geological significances. Science Bulletin, 2014, 59, 2764-2775.	1.7	6
100	A 1400 year environmental magnetic record from varved sediments of <scp>L</scp> ake <scp>X</scp> iaolongwan (<scp>N</scp> ortheast <scp>C</scp> hina) reflecting natural and anthropogenic soil erosion. Geochemistry, Geophysics, Geosystems, 2015, 16, 3053-3060.	2.5	6
101	Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 15791-15808.	6.7	6
102	Behavior of Greigiteâ€Bearing Marine Sediments During AF and Thermal Demagnetization and Its Significance. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008635.	2.5	6
103	Secular variations in geomagnetic Field caused by the fluctuations in the fluid flow in the outer-core. Science Bulletin, 1999, 44, 1214-1218.	1.7	5
104	Magnetic susceptibility variation and AMS exchange related to thermal treatment of siderite. Science Bulletin, 1999, 44, 1135-1139.	1.7	5
105	Rock magnetic investigation and its geological significance for veinâ€ŧype uranium deposits in southern <scp>C</scp> hina. Geochemistry, Geophysics, Geosystems, 2017, 18, 1333-1349.	2.5	5
106	Recording Fidelity of Relative Paleointensity Characteristics in the North Pacific Ocean. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022068.	3.4	5
107	Coeval Evolution of the Eastern Philippine Sea Plate and the South China Sea in the Early Miocene: Paleomagnetic and Provenance Constraints From ODP Site 1177. Geophysical Research Letters, 2021, 48, e2021GL093916.	4.0	5
108	Millennial Resolution Late Miocene Northern China Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 2021, 48, e2021GL093942.	4.0	5

#	Article	IF	CITATIONS
109	Link between the geomagnetic polarity reversal and global-geology events. Science Bulletin, 1999, 44, 1843-1851.	1.7	4
110	Partial anhysteretic remanent magnetization (pARM) of synthetic single- and multidomain magnetites and its paleoenvironmental significance. Science Bulletin, 2005, 50, 2381-2384.	1.7	4
111	Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene. Quaternary Science Reviews, 2020, 229, 106106.	3.0	4
112	Geomagnetic Field Paleointensity Spanning the Past 11ÂMyr From Marine Magnetic Anomalies in the Southern Hemisphere. Geophysical Research Letters, 2021, 48, e2021GL093235.	4.0	4
113	Paleoenvironmental Significance of Magnetofossils in Pelagic Sediments in the Equatorial Pacific Ocean Before and After the Eocene/Oligocene Boundary. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022221.	3.4	4
114	Magnetic characterization and paleoclimatic significances of late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean. Science China Earth Sciences, 2012, 55, 323-331.	5.2	3
115	Authigenic Iron Sulfides Indicate Seaâ€Level Change on the Continental Shelf: An Illustration From the East China Sea. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021222.	3.4	3
116	The statistical model for the secondary quick reversals during the geomagnetic pole transition. Science in China Series D: Earth Sciences, 2000, 43, 237-242.	0.9	2
117	Geomagnetic field intensity determination from Pleistocene trachytic lava flows in Jeju Geopark. Geochemistry, Geophysics, Geosystems, 2014, 15, 516-529.	2.5	2
118	Mechanism of magnetic property changes of serpentinites from ODP Holes 897D and 1070A. Science China Earth Sciences, 2015, 58, 815-829.	5.2	2
119	Magnetic characteristics of lake sediments in Qiangyong Co Lake, southern Tibetan Plateau and their application to the evaluation of mercury deposition. Journal of Chinese Geography, 2020, 30, 1481-1494.	3.9	2
120	Thermal Alteration History of the Fenghuoshan Group, Hoh Xil Basin, Northern Tibetan Plateau: Insights From Clumped Isotope Thermometry. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022009.	3.4	2
121	Inverse Magnetic Fabrics Caused by Magnetofossils in the Northwestern South China Sea Since End of the Last Glacial. Geophysical Research Letters, 2022, 49, .	4.0	2
122	Secular variations ing 1 0 component of geomagnetic field and its origin. Science in China Series D: Earth Sciences, 1999, 42, 195-201.	0.9	1
123	Magnetic characteristics of insoluble microparticles in ice core (Nojingkangsang) from the southern Tibetan Plateau and its environmental significance. Science China Earth Sciences, 2011, 54, 1635-1642.	5.2	1
124	An integrated natural remanent magnetization acquisition model for the Matuyamaâ€Brunhes reversal recorded by the Chinese loess. Geochemistry, Geophysics, Geosystems, 2016, 17, 3150-3163.	2.5	1
125	Holocene paleosecular variations recorded by relict magnetic minerals in the anoxic Black Sea sediments. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	1
126	The Early Miocene Provenance Shift of ODP Site 1177 and Implications for the Tectonic Evolution of the Shikoku Basin, Philippine Sea Plate. Frontiers in Earth Science, 2022, 10, .	1.8	0