
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21418/publications.pdf Version: 2024-02-01

Ιπ 2ηση

#	Article	lF	CITATIONS
1	The Role of Abnormal Uterine Junction Zone in the Occurrence and Development of Adenomyosis. Reproductive Sciences, 2022, 29, 2719-2730.	2.5	8
2	CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics, 2022, 12, 767-781.	10.0	20
3	A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nature Communications, 2022, 13, 438.	12.8	53
4	The relevance of organelle interactions in cellular senescence. Theranostics, 2022, 12, 2445-2464.	10.0	15
5	βâ€cateninâ€controlled tubular cellâ€derived exosomes play a key role in fibroblast activation via the OPNâ€CD44 axis. Journal of Extracellular Vesicles, 2022, 11, e12203.	12.2	31
6	AMPK Activator O304 Protects Against Kidney Aging Through Promoting Energy Metabolism and Autophagy. Frontiers in Pharmacology, 2022, 13, 836496.	3.5	5
7	CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis via β-Catenin-Induced Mitochondrial Dysfunction. Frontiers in Cell and Developmental Biology, 2022, 10, 862675.	3.7	4
8	Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney International, 2022, 102, 506-520.	5.2	26
9	B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-l²-catenin pathway. Cell Death and Differentiation, 2022, 29, 2399-2416.	11.2	7
10	Cannabinoid receptor type 2 promotes kidney fibrosis through orchestrating β-catenin signaling. Kidney International, 2021, 99, 364-381.	5.2	32
11	The Emerging Key Role of Klotho in the Hypothalamus–Pituitary–Ovarian Axis. Reproductive Sciences, 2021, 28, 322-331.	2.5	16
12	Physiological system analysis of the kidney by highâ€ŧemporalâ€ŧesolution monitoring of an oxygenation step response. Magnetic Resonance in Medicine, 2021, 85, 334-345.	3.0	2
13	Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling. Cell Death and Disease, 2021, 12, 70.	6.3	10
14	Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Research and Therapy, 2021, 12, 197.	5.5	25
15	Penicilliumin B Protects against Cisplatin-Induced Renal Tubular Cell Apoptosis through Activation of AMPK-Induced Autophagy and Mitochondrial Biogenesis. Kidney Diseases (Basel, Switzerland), 2021, 7, 278-292.	2.5	6
16	Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. Journal of Cellular and Molecular Medicine, 2021, 25, 8957-8972.	3.6	14
17	Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney International, 2021, 100, 837-849.	5.2	15
18	Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiological Reports, 2021, 9, e14696.	1.7	30

#	Article	IF	CITATIONS
19	The role of androgen and its related signals in PCOS. Journal of Cellular and Molecular Medicine, 2021, 25, 1825-1837.	3.6	61
20	Role of miRNA-671-5p in Mediating Wnt/β-Catenin-Triggered Podocyte Injury. Frontiers in Pharmacology, 2021, 12, 784489.	3.5	7
21	Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney International, 2020, 97, 1181-1195.	5.2	82
22	Wnt signaling in kidney: the initiator or terminator?. Journal of Molecular Medicine, 2020, 98, 1511-1523.	3.9	20
23	MicroRNAâ€466oâ€3p mediates βâ€cateninâ€induced podocyte injury by targeting Wilms tumor 1. FASEB Journ 2020, 34, 14424-14439.	al _{ð.5}	8
24	Advancements in therapeutic drugs targeting of senescence. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232096412.	2.5	31
25	Autophagy negative-regulating Wnt signaling enhanced inflammatory osteoclastogenesis from Pre-OCs in vitro. Biomedicine and Pharmacotherapy, 2020, 126, 110093.	5.6	16
26	Câ€X motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/βâ€catenin pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 3837-3855.	3.6	30
27	Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 601325.	3.5	40
28	Developing a Novel Anti-CD19/CD20 Bi-Specific Chimeric Antigen Receptor T (CAR-T) Cell Therapy for Relapsed/Refractory (r/r) B-Cell NHL. Blood, 2020, 136, 8-8.	1.4	0
29	Early Clinical Results of a Novel Anti-CD20 Chimeric Antigen Receptor (CAR)-T Cell Therapy for B-Cell NHL Patients Who Are Relapsed/Resistant Following CD19 CAR-T Therapy. Blood, 2020, 136, 8-9.	1.4	0
30	Wnt/β atenin/RAS signaling mediates ageâ€related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell, 2019, 18, e13004.	6.7	155
31	The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	104
32	Serum testosterone acts as a prognostic indicator in polycystic ovary syndromeâ€essociated kidney injury. Physiological Reports, 2019, 7, e14219.	1.7	24
33	Wnt∫î²-catenin regulates blood pressure and kidney injury in rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1313-1322.	3.8	29
34	Wnt∫î²-catenin links oxidative stress to podocyte injury and proteinuria. Kidney International, 2019, 95, 830-845.	5.2	105
35	Wnt/β-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney International, 2019, 95, 815-829.	5.2	66
36	Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney International, 2019, 95, 62-74.	5.2	34

#	Article	IF	CITATIONS
37	Fatty acid positional distribution (<i>sn</i> -2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. British Journal of Nutrition, 2019, 121, 65-73.	2.3	38
38	Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2018, 29, 1238-1256.	6.1	163
39	Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology, 2018, 67, 2320-2337.	7.3	40
40	Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renalÂfibrosis. Kidney International, 2018, 94, 756-772.	5.2	48
41	An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Scientific Reports, 2018, 8, 8996.	3.3	68
42	(Pro)renin Receptor Is an Amplifier of Wnt∬²-Catenin Signaling in Kidney Injury and Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2393-2408.	6.1	86
43	C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury. Antioxidants and Redox Signaling, 2017, 27, 345-362.	5.4	37
44	Penicilliumin B, a novel sesquiterpene methylcyclopentenedione from a deep sea-derived Penicillium strain with renoprotective activities. Scientific Reports, 2017, 7, 10757.	3.3	14
45	Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 785-801.	6.1	87
46	Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS Journal, 2017, 19, 203-214.	4.4	14
47	Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 598-611.	6.1	118
48	Wnt/β-catenin signaling and renin–angiotensin system in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2016, 25, 100-106.	2.0	61
49	Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. Journal of the American Society of Nephrology: JASN, 2016, 27, 1727-1740.	6.1	189
50	Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs. American Journal of Pathology, 2015, 185, 3304-3315.	3.8	29
51	Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nature Reviews Nephrology, 2015, 11, 535-545.	9.6	167
52	Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. American Journal of Pathology, 2015, 185, 3211-3223.	3.8	124
53	Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 2447-2459.	6.1	54
54	Mice with Hepatic Loss of the Desmosomal Protein γ-Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. American Journal of Pathology, 2015, 185, 3274-3289.	3.8	12

#	Article	IF	CITATIONS
55	Mutual Antagonism of Wilms' Tumor 1 and β-Catenin Dictates Podocyte Health and Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 677-691.	6.1	55
56	Multiple Genes of the Renin-Angiotensin System Are Novel Targets of Wnt/β-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2015, 26, 107-120.	6.1	184
57	Wnt/β-catenin signaling and kidney fibrosis. Kidney International Supplements, 2014, 4, 84-90.	14.2	221
58	Activation of β-Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	1.3	249
59	Sonic Hedgehog Is a Novel Tubule-Derived Growth Factor for Interstitial Fibroblasts after Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 2187-2200.	6.1	116
60	Complex regulatory interplay of γ atenin and β atenin in liver cells (59.10). FASEB Journal, 2014, 28, 59.10.	0.5	0
61	Hepatocyteâ€specific γâ€catenin deletion lacks an overt phenotype (649.6). FASEB Journal, 2014, 28, 649.6.	0.5	0
62	Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt/β-Catenin Signaling. Journal of the American Society of Nephrology: JASN, 2013, 24, 771-785.	6.1	309
63	Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney International, 2013, 84, 509-520.	5.2	108
64	Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 801-813.	6.1	166
65	Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney International, 2012, 82, 537-547.	5.2	181