
Young-Bum Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 2002, 415, 339-343.	27.8	1,823
2	AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.	27.8	1,464
3	PTP1B Regulates Leptin Signal Transduction In Vivo. Developmental Cell, 2002, 2, 489-495.	7.0	735
4	Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. Journal of Clinical Investigation, 1999, 104, 733-741.	8.2	391
5	Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neuroscience, 2006, 9, 901-906.	14.8	294
6	Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes. Korean Journal of Internal Medicine, 2010, 25, 119.	1.7	180
7	Troglitazone but not Metformin Restores Insulin-Stimulated Phosphoinositide 3-Kinase Activity and Increases p110Â Protein Levels in Skeletal Muscle of Type 2 Diabetic Subjects. Diabetes, 2002, 51, 443-448.	0.6	160
8	ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration. Cell Reports, 2015, 10, 1173-1186.	6.4	154
9	Insulin-Stimulated Protein Kinase C Â/Â Activity Is Reduced in Skeletal Muscle of Humans With Obesity and Type 2 Diabetes: Reversal With Weight Reduction. Diabetes, 2003, 52, 1935-1942.	0.6	149
10	Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metabolism, 2005, 2, 119-129.	16.2	148
11	Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Molecular Metabolism, 2016, 5, 589-601.	6.5	122
12	Targeted Disruption of ROCK1 Causes Insulin Resistance in Vivo. Journal of Biological Chemistry, 2009, 284, 11776-11780.	3.4	108
13	Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nature Neuroscience, 2012, 15, 1391-1398.	14.8	83
14	In Vivo Administration of Leptin Activates Signal Transduction Directly in Insulin-Sensitive Tissues: Overlapping but Distinct Pathways from Insulin. Endocrinology, 2000, 141, 2328-2339.	2.8	81
15	Fatty Acid Infusion Selectively Impairs Insulin Action on Akt1 and Protein Kinase C λ/ζ but Not on Glycogen Synthase Kinase-3. Journal of Biological Chemistry, 2002, 277, 32915-32922.	3.4	78
16	Uncoupling Protein 3 (UCP3) Stimulates Glucose Uptake in Muscle Cells through a Phosphoinositide 3-Kinase-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 12520-12529.	3.4	75
17	Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization. Endocrinology, 2012, 153, 1649-1662.	2.8	69
18	Hypothalamic Microglial Activation in Obesity: A Mini-Review. Frontiers in Neuroscience, 2018, 12, 846.	2.8	68

Young-Bum Kim

#	Article	IF	CITATIONS
19	Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nature Metabolism, 2021, 3, 1071-1090.	11.9	67
20	Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal of Clinical Investigation, 2018, 128, 5335-5350.	8.2	57
21	Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nature Communications, 2013, 4, 1862.	12.8	52
22	Muscle-Specific Deletion of the Glut4 Glucose Transporter Alters Multiple Regulatory Steps in Glycogen Metabolism. Molecular and Cellular Biology, 2005, 25, 9713-9723.	2.3	51
23	SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle. Diabetes, 2015, 64, 2420-2431.	0.6	50
24	ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E332-E343.	3.5	47
25	Role of POMC and AgRP neuronal activities on glycaemia in mice. Scientific Reports, 2019, 9, 13068.	3.3	46
26	In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E536-E542.	3.5	44
27	Selective PPARÎ ³ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E552-E560.	3.5	39
28	Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in middle-aged men. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E147-E153.	3.5	36
29	Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells. Scientific Reports, 2018, 8, 2477.	3.3	36
30	Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Scientific Reports, 2020, 10, 10160.	3.3	35
31	ROCK1 in AgRP Neurons Regulates Energy Expenditure and Locomotor Activity in Male Mice. Endocrinology, 2013, 154, 3660-3670.	2.8	34
32	ApolipoproteinÂJ is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nature Communications, 2020, 11, 2024.	12.8	34
33	The association between pentraxin 3 and insulin resistance in obese children at baseline and after physical activity intervention. Clinica Chimica Acta, 2012, 413, 1430-1437.	1.1	27
34	Metabolic actions of Rho-kinase in periphery and brain. Trends in Endocrinology and Metabolism, 2013, 24, 506-514.	7.1	27
35	Methylsulfonylmethane (MSM), an organosulfur compound, is effective against obesity-induced metabolic disorders in mice. Metabolism: Clinical and Experimental, 2016, 65, 1508-1521.	3.4	25
36	Circulating ApoJ is closely associated with insulin resistance in human subjects. Metabolism: Clinical and Experimental, 2018, 78, 155-166.	3.4	24

Young-Bum Kim

#	Article	IF	CITATIONS
37	SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle. Metabolism: Clinical and Experimental, 2019, 95, 27-35.	3.4	20
38	Urine clusterin/apolipoprotein J is linked to tubular damageÂand renal outcomes in patients with type 2 diabetesÂmellitus. Clinical Endocrinology, 2017, 87, 156-164.	2.4	16
39	The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress. Experimental and Molecular Medicine, 2020, 52, 485-496.	7.7	15
40	Exercising insulin sensitivity: AMPK turns on autophagy!. Metabolism: Clinical and Experimental, 2015, 64, 655-657.	3.4	14
41	Metformin Ameliorates Lipotoxic Î ² -Cell Dysfunction through a Concentration-Dependent Dual Mechanism of Action. Diabetes and Metabolism Journal, 2019, 43, 854.	4.7	14
42	AMPK ↔ Sirt1: From a signaling network to a combination drug. Metabolism: Clinical and Experimental, 2016, 65, 1692-1694.	3.4	13
43	Combined Aerobic and Resistance Exercise Training Reduces Circulating Apolipoprotein J Levels and Improves Insulin Resistance in Postmenopausal Diabetic Women. Diabetes and Metabolism Journal, 2020, 44, 103.	4.7	13
44	Clusterin (apolipoprotein J): wither link with diabetes and cardiometabolic risk?. Metabolism: Clinical and Experimental, 2011, 60, 747-748.	3.4	8
45	Rho-Kinase as a Therapeutic Target for Nonalcoholic Fatty Liver Diseases. Diabetes and Metabolism Journal, 2021, 45, 655-674.	4.7	8
46	SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Reports, 2022, 38, 110408.	6.4	7
47	LRP1 regulates food intake and energy balance in GABAergic neurons independently of leptin action. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E379-E389.	3.5	4
48	S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants, 2020, 9, 870.	5.1	2
49	Vascular smooth muscle ROCK1 contributes to hypoxia-induced pulmonary hypertension development in mice. Biochemical and Biophysical Research Communications, 2022, 604, 137-143.	2.1	1
50	TET2: Is a potential gatekeeper for the action of thiazolidinedione in fat cells?. Metabolism: Clinical and Experimental, 2018, 89, A1-A2.	3.4	0