Robert Barouki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141496/publications.pdf

Version: 2024-02-01

48 4,437 31 52
papers citations h-index g-index

55 55 55 6732 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annual Review of Pharmacology and Toxicology, 2022, 62, 383-404.	9.4	37
2	Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. Environment International, 2022, 158, 106915.	10.0	18
3	Merging the exposome into an integrated framework for "omics―sciences. IScience, 2022, 25, 103976.	4.1	18
4	The Exposome and Toxicology: A Win–Win Collaboration. Toxicological Sciences, 2022, 186, 1-11.	3.1	20
5	The exposome as the science of social-to-biological transitions. Environment International, 2022, 165, 107312.	10.0	17
6	A call for urgent action to safeguard our planet and our health in line with the helsinki declaration. Environmental Research, 2021, 193, 110600.	7.5	30
7	The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 2021, 146, 106272.	10.0	157
8	Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An <i>in Vitro</i> and <i>in Vivo</i> Zebrafish Study. Environmental Health Perspectives, 2021, 129, 37002.	6.0	16
9	A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. International Journal of Hygiene and Environmental Health, 2021, 238, 113826.	4.3	17
10	Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environment International, 2021, 156, 106630.	10.0	39
11	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 2020, 134, 105267.	10.0	165
12	Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environment International, 2020, 139, 105545.	10.0	133
13	First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacological Research, 2020, 159, 104869.	7.1	14
14	The Exposome: Pursuing the Totality of Exposure. , 2020, , 3-10.		2
15	Environnement et santé. Incertitude et précaution. Raison Présente, 2020, N° 214-215, 119-130.	0.1	0
16	A dual mixture of persistent organic pollutants modifies carbohydrate metabolism in the human hepatic cell line HepaRG. Environmental Research, 2019, 178, 108628.	7.5	12
17	Associations between persistent organic pollutants and risk of breast cancer metastasis. Environment International, 2019, 132, 105028.	10.0	58
18	Linking Bisphenol S to Adverse Outcome Pathways Using a Combined Text Mining and Systems Biology Approach. Environmental Health Perspectives, 2019, 127, 47005.	6.0	69

#	Article	IF	Citations
19	Timescales of developmental toxicity impacting on research and needs for intervention. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 70-80.	2.5	23
20	Release and toxicity of adipose tissue-stored TCDD: Direct evidence from a xenografted fat model. Environment International, 2018, 121, 1113-1120.	10.0	18
21	Current EU research activities on combined exposure to multiple chemicals. Environment International, 2018, 120, 544-562.	10.0	169
22	Integration of the human exposome with the human genome to advance medicine. Biochimie, 2018, 152, 155-158.	2.6	36
23	Endocrine disruptors: Revisiting concepts and dogma in toxicology. Comptes Rendus - Biologies, 2017, 340, 410-413.	0.2	37
24	Down-regulation of the expression of alcohol dehydrogenase 4 and CYP2E1 by the combination of \hat{l}_{\pm} -endosulfan and dioxin in HepaRG human cells. Toxicology in Vitro, 2017, 45, 309-317.	2.4	9
25	Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model. Environmental Health Perspectives, 2017, 125, 428-436.	6.0	98
26	Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicological Sciences, 2016, 149, 158-166.	3.1	13
27	Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and) Tj ETQq1 1 0.7 human hepatocyte lipid and glucose metabolism. Biochimie, 2015, 116, 79-91.	'84314 rg 2.6	BT /Overlock 35
28	Serum 2-Hydroxyglutarate Production in <i>IDH1</i> - and <i>IDH2</i> - Mutated De Novo Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. Journal of Clinical Oncology, 2014, 32, 297-305.	1.6	109
29	Early-life prevention of non-communicable diseases. Lancet, The, 2013, 381, 3-4.	13.7	143
30	Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environmental Health Perspectives, 2013, 121, 162-169.	6.0	269
31	The Adipose Tissue: Storage, Source, and Target of Pollutants. , 2013, , 159-167.		0
32	The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discovery Today, 2013, 18, 479-486.	6.4	115
33	Inflammatory Pathway Genes Belong to Major Targets of Persistent Organic Pollutants in Adipose Cells. Environmental Health Perspectives, 2012, 120, 508-514.	6.0	140
34	The aryl hydrocarbon receptor system. Drug Metabolism and Drug Interactions, 2012, 27, 3-8.	0.3	101
35	Developmental origins of non-communicable disease: Implications for research and public health. Environmental Health, $2012,11,42.$	4.0	589
36	Identification of a new stilbene-derived inducer of paraoxonase 1 and ligand of the Aryl hydrocarbon Receptor. Biochemical Pharmacology, 2012, 83, 627-632.	4.4	15

#	Article	IF	CITATION
37	Induction of the Ras activator Son of Sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochemical Pharmacology, 2011, 81, 304-313.	4.4	30
38	Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. International Journal of Cancer, 2011, 128, 2591-2601.	5.1	105
39	Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss. Environmental Health Perspectives, 2011, 119, 377-383.	6.0	170
40	Cell migration and metastasis markers as targets of environmental pollutants and the Aryl hydrocarbon receptor. Cell Adhesion and Migration, 2010, 4, 72-76.	2.7	13
41	Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie, 2010, 92, 1222-1226.	2.6	32
42	The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Letters, 2007, 581, 3608-3615.	2.8	347
43	Dietary Polyphenols Increase Paraoxonase 1 Gene Expression by an Aryl Hydrocarbon Receptor-Dependent Mechanism. Molecular and Cellular Biology, 2004, 24, 5209-5222.	2.3	207
44	Induction of the Paraoxonase-1 Gene Expression by Resveratrol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2378-2383.	2.4	84
45	Opposite Regulation of the Human Paraoxonase-1 Gene PON-1 by Fenofibrate and Statins. Molecular Pharmacology, 2003, 63, 945-956.	2.3	122
46	PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides. Biochemical Pharmacology, 2002, 64, 1513-1519.	4.4	106
47	Repression of cytochrome P450 1A1 gene expression by oxidative stress: mechanisms and biological implications. Biochemical Pharmacology, 2001, 61, 511-516.	4.4	154
48	An Autoregulatory Loop Controlling <i>CYP1A1</i> Hegylo 2 Hegylo 2<	2.3	95