Robert Barouki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141496/publications.pdf

Version: 2024-02-01

48 4,437 31 52
papers citations h-index g-index

55 55 55 6732 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Developmental origins of non-communicable disease: Implications for research and public health. Environmental Health, 2012, 11, 42.	4.0	589
2	The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Letters, 2007, 581, 3608-3615.	2.8	347
3	Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environmental Health Perspectives, 2013, 121, 162-169.	6.0	269
4	Dietary Polyphenols Increase Paraoxonase 1 Gene Expression by an Aryl Hydrocarbon Receptor-Dependent Mechanism. Molecular and Cellular Biology, 2004, 24, 5209-5222.	2.3	207
5	Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss. Environmental Health Perspectives, 2011, 119, 377-383.	6.0	170
6	Current EU research activities on combined exposure to multiple chemicals. Environment International, 2018, 120, 544-562.	10.0	169
7	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 2020, 134, 105267.	10.0	165
8	The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 2021, 146, 106272.	10.0	157
9	Repression of cytochrome P450 1A1 gene expression by oxidative stress: mechanisms and biological implications. Biochemical Pharmacology, 2001, 61, 511-516.	4.4	154
10	Early-life prevention of non-communicable diseases. Lancet, The, 2013, 381, 3-4.	13.7	143
11	Inflammatory Pathway Genes Belong to Major Targets of Persistent Organic Pollutants in Adipose Cells. Environmental Health Perspectives, 2012, 120, 508-514.	6.0	140
12	Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environment International, 2020, 139, 105545.	10.0	133
13	Opposite Regulation of the Human Paraoxonase-1 Gene PON-1 by Fenofibrate and Statins. Molecular Pharmacology, 2003, 63, 945-956.	2.3	122
14	The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discovery Today, 2013, 18, 479-486.	6.4	115
15	Serum 2-Hydroxyglutarate Production in <i>IDH1</i> - and <i>IDH2</i> - Mutated De Novo Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. Journal of Clinical Oncology, 2014, 32, 297-305.	1.6	109
16	PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides. Biochemical Pharmacology, 2002, 64, 1513-1519.	4.4	106
17	Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. International Journal of Cancer, 2011, 128, 2591-2601.	5.1	105
18	The aryl hydrocarbon receptor system. Drug Metabolism and Drug Interactions, 2012, 27, 3-8.	0.3	101

#	Article	IF	CITATIONS
19	Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model. Environmental Health Perspectives, 2017, 125, 428-436.	6.0	98
20	An Autoregulatory Loop Controlling <i>CYP1A1</i> Gene Expression: Role of H ₂ O ₂ and NFI. Molecular and Cellular Biology, 1999, 19, 6825-6832.	2.3	95
21	Induction of the Paraoxonase-1 Gene Expression by Resveratrol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2378-2383.	2.4	84
22	Linking Bisphenol S to Adverse Outcome Pathways Using a Combined Text Mining and Systems Biology Approach. Environmental Health Perspectives, 2019, 127, 47005.	6.0	69
23	Associations between persistent organic pollutants and risk of breast cancer metastasis. Environment International, 2019, 132, 105028.	10.0	58
24	Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environment International, 2021, 156, 106630.	10.0	39
25	Endocrine disruptors: Revisiting concepts and dogma in toxicology. Comptes Rendus - Biologies, 2017, 340, 410-413.	0.2	37
26	Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annual Review of Pharmacology and Toxicology, 2022, 62, 383-404.	9.4	37
27	Integration of the human exposome with the human genome to advance medicine. Biochimie, 2018, 152, 155-158.	2.6	36
28	Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and) Tj ETQq0 0 0 human hepatocyte lipid and glucose metabolism. Biochimie, 2015, 116, 79-91.	rgBT /Ove 2.6	rlock 10 Tf 50 35
29	Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie, 2010, 92, 1222-1226.	2.6	32
30	Induction of the Ras activator Son of Sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochemical Pharmacology, 2011, 81, 304-313.	4.4	30
31	A call for urgent action to safeguard our planet and our health in line with the helsinki declaration. Environmental Research, 2021, 193, 110600.	7.5	30
32	Timescales of developmental toxicity impacting on research and needs for intervention. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 70-80.	2.5	23
33	The Exposome and Toxicology: A Win–Win Collaboration. Toxicological Sciences, 2022, 186, 1-11.	3.1	20
34	Release and toxicity of adipose tissue-stored TCDD: Direct evidence from a xenografted fat model. Environment International, 2018, 121, 1113-1120.	10.0	18
35	Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. Environment International, 2022, 158, 106915.	10.0	18
36	Merging the exposome into an integrated framework for "omics―sciences. IScience, 2022, 25, 103976.	4.1	18

#	Article	IF	CITATIONS
37	A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. International Journal of Hygiene and Environmental Health, 2021, 238, 113826.	4.3	17
38	The exposome as the science of social-to-biological transitions. Environment International, 2022, 165, 107312.	10.0	17
39	Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An <i>in Vitro</i> and <i>in Vivo</i> Zebrafish Study. Environmental Health Perspectives, 2021, 129, 37002.	6.0	16
40	Identification of a new stilbene-derived inducer of paraoxonase 1 and ligand of the Aryl hydrocarbon Receptor. Biochemical Pharmacology, 2012, 83, 627-632.	4.4	15
41	First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacological Research, 2020, 159, 104869.	7.1	14
42	Cell migration and metastasis markers as targets of environmental pollutants and the Aryl hydrocarbon receptor. Cell Adhesion and Migration, 2010, 4, 72-76.	2.7	13
43	Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicological Sciences, 2016, 149, 158-166.	3.1	13
44	A dual mixture of persistent organic pollutants modifies carbohydrate metabolism in the human hepatic cell line HepaRG. Environmental Research, 2019, 178, 108628.	7. 5	12
45	Down-regulation of the expression of alcohol dehydrogenase 4 and CYP2E1 by the combination of \hat{l}_{\pm} -endosulfan and dioxin in HepaRG human cells. Toxicology in Vitro, 2017, 45, 309-317.	2.4	9
46	The Exposome: Pursuing the Totality of Exposure. , 2020, , 3-10.		2
47	The Adipose Tissue: Storage, Source, and Target of Pollutants. , 2013, , 159-167.		0
48	Environnement et santé. Incertitude et précaution. Raison Présente, 2020, Nº 214-215, 119-130.	0.1	0