
Stefano B Brandani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to the letter to the editor by Silva and Rodrigues. Adsorption, 2022, 28, 101-103.	3.0	Ο
2	Direct measurement of the mass transport coefficient of water in silica-gel using the zero length column technique. Energy, 2022, 239, 121945.	8.8	4
3	A novel adsorption differential volumetric apparatus to measure mass transfer in nanoporous materials. Separation and Purification Technology, 2022, 283, 120210.	7.9	4
4	Water Adsorption on AQSOA-FAM-Z02 Beads. Journal of Chemical & Engineering Data, 2022, 67, 1723-1731.	1.9	4
5	Adsorption reverse electrodialysis driven by power plant waste heat to generate electricity and provide cooling. International Journal of Energy Research, 2021, 45, 1971-1987.	4.5	10
6	Understanding CO2 adsorption in a flexible zeolite through a combination of structural, kinetic and modelling techniques. Separation and Purification Technology, 2021, 256, 117846.	7.9	14
7	A review of common practices in gravimetric and volumetric adsorption kinetic experiments. Adsorption, 2021, 27, 295-318.	3.0	45
8	Accurate blank corrections for zero length column experiments. Adsorption, 2021, 27, 129-145.	3.0	10
9	The zero length column technique to measure adsorption equilibrium and kinetics: lessons learnt from 30 years of experience. Adsorption, 2021, 27, 319-351.	3.0	29
10	Exact equivalence at cyclic steady state between isothermal diffusion and linear driving force models for linear adsorption systems. Adsorption, 2021, 27, 171-180.	3.0	0
11	Sorption kinetics: measurement of surface resistance. Adsorption, 2021, 27, 787-799.	3.0	18
12	Kinetics of liquid phase batch adsorption experiments. Adsorption, 2021, 27, 353-368.	3.0	36
13	Martin Bülow: response. Adsorption, 2021, 27, 993-993.	3.0	0
14	Activity coefficient models for accurate prediction of adsorption azeotropes. Adsorption, 2021, 27, 1191-1206.	3.0	6
15	Cation Ordering and Exsolution in Copperâ€Containing Forms of the Flexible Zeolite Rho (Cu,Mâ€Rho;) Tj ETQq1 2021, 27, 13029-13039.	1 0.7843 3.3	11 A rgBT /Ove
16	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	47.7	115
17	Solar powered adsorption desalination for Northern and Southern Europe. Energy, 2021, 232, 120942.	8.8	18
18	Structural Chemistry, Flexibility, and CO ₂ Adsorption Performance of Alkali Metal Forms of Merlinoite with a Framework Si/Al Ratio of 4.2. Journal of Physical Chemistry C, 2021, 125, 27403-27419.	3.1	7

#	Article	IF	CITATIONS
19	Using a volumetric apparatus to identify and measure the mass transfer resistance in commercial adsorbents. Microporous and Mesoporous Materials, 2020, 304, 109277.	4.4	11
20	Adsorption and diffusion of CO2 in CPO-27–Ni beads. Adsorption, 2020, 26, 711-721.	3.0	12
21	Dual-piston pressure swing adsorption system: Instrumentation and characterisation with pure gas experiments. Chemical Engineering Science, 2020, 214, 115423.	3.8	4
22	Measurement of water vapor adsorption isotherms in mesoporous materials using the zero length column technique. Chemical Engineering Science, 2020, 214, 115417.	3.8	11
23	Adsorption celebrates 25Âyears. Adsorption, 2020, 26, 3-3.	3.0	2
24	A priori predictions of type I and type V isotherms by the rigid adsorbent lattice fluid. Adsorption, 2020, 26, 989-1000.	3.0	13
25	Measurement of Diffusion in Small Pore Zeolites to Improve Selectivity in Separation Processes. Structure and Bonding, 2020, , 121-144.	1.0	0
26	Carbon dioxide mass transport in commercial carbon molecular sieves using a volumetric apparatus. Separation and Purification Technology, 2020, 245, 116862.	7.9	11
27	Combining the Nonuniform Structure and Flow Maldistribution for the Accurate Prediction of the Process Performance of Monolithic Adsorbent Systems. Industrial & (Engineering Chemistry Research, 2020, 59, 3162-3172.	3.7	9
28	Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy and Environmental Science, 2020, 13, 1018-1037.	30.8	35
29	Ionogels at the Water-Energy Nexus for Desalination Powered by Ultralow-Grade Heat. Environmental Science & Technology, 2020, 54, 3591-3598.	10.0	21
30	Hiding extra-framework cations in zeolitesÂL and Y by internal ion exchange and its effect on CO ₂ adsorption. Journal of Materials Chemistry A, 2020, 8, 3280-3292.	10.3	10
31	Monolithic Adsorbent-Based Rapid-Cycle Vacuum Pressure Swing Adsorption Process for Carbon Capture from Small-Scale Steam Methane Reforming. Industrial & Engineering Chemistry Research, 2020, 59, 7109-7120.	3.7	12
32	Triggered Gate Opening and Breathing Effects during Selective CO ₂ Adsorption by Merlinoite Zeolite. Journal of the American Chemical Society, 2019, 141, 12744-12759.	13.7	82
33	Design and experimental study of a small scale adsorption desalinator. Applied Energy, 2019, 253, 113584.	10.1	26
34	Cycle and performance analysis of a small-scale adsorption heat transformer for desalination and cooling applications. Chemical Engineering Journal, 2019, 378, 122104.	12.7	42
35	Nonâ€Porous versus Mesoporous Siliceous Materials for CO ₂ Capture. ChemistryOpen, 2019, 8, 719-727.	1.9	17
36	Gas separation by adsorption: technological drivers and opportunities for improvement. Current Opinion in Chemical Engineering, 2019, 24, 131-142.	7.8	69

#	Article	IF	CITATIONS
37	A Porous Carbon with Excellent Gas Storage Properties from Waste Polystyrene. Nanomaterials, 2019, 9, 726.	4.1	15
38	Predictions of Stepped Isotherms in Breathing Adsorbents by the Rigid Adsorbent Lattice Fluid. Journal of Physical Chemistry C, 2019, 123, 14517-14529.	3.1	8
39	Exploring the opportunities for carbon capture in modular, small-scale steam methane reforming: An energetic perspective. International Journal of Hydrogen Energy, 2019, 44, 14732-14743.	7.1	21
40	An experimental and modelling study of water vapour adsorption on SBA-15. Microporous and Mesoporous Materials, 2019, 282, 53-72.	4.4	17
41	The rigid adsorbent lattice fluid model for pure and mixed gas adsorption. AICHE Journal, 2019, 65, 1304-1314.	3.6	9
42	Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis. Energy, 2019, 166, 674-689.	8.8	42
43	Pure and Binary Adsorption of Carbon Dioxide and Nitrogen on AQSOA FAM Z02. Journal of Chemical & Engineering Data, 2018, 63, 661-670.	1.9	11
44	Testing the stability of novel adsorbents for carbon capture applications using the zero length column technique. Chemical Engineering Research and Design, 2018, 131, 406-413.	5.6	16
45	From Crystal to Adsorption Column: Challenges in Multiscale Computational Screening of Materials for Adsorption Separation Processes. Industrial & Engineering Chemistry Research, 2018, 57, 15491-15511.	3.7	61
46	An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat. Applied Energy, 2018, 231, 222-234.	10.1	40
47	A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: results of an interlaboratory study. Adsorption, 2018, 24, 531-539.	3.0	59
48	Carbon nanotube/PVA aerogels impregnated with PEI: solid adsorbents for CO ₂ capture. Sustainable Energy and Fuels, 2018, 2, 1630-1640.	4.9	10
49	Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression. Energy, 2018, 162, 1158-1168.	8.8	40
50	Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO 2 capture. Applied Energy, 2017, 192, 126-133.	10.1	71
51	Comparison of amine-impregnated mesoporous carbon with microporous activated carbon and 13X zeolite for biogas purification. Journal of Porous Materials, 2017, 24, 1473-1479.	2.6	10
52	CO ₂ adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. Physical Chemistry Chemical Physics, 2017, 19, 14114-14128.	2.8	22
53	Net, excess and absolute adsorption in mixed gas adsorption. Adsorption, 2017, 23, 569-576.	3.0	6
54	Molecular simulation and experiments of water adsorption in a high surface area activated carbon: Hysteresis, scanning curves and spatial organization of water clusters. Carbon, 2017, 118, 127-138.	10.3	49

#	Article	IF	CITATIONS
55	The influence of particle size of amino-functionalized MCM-41 silicas on CO ₂ adsorption. Physical Chemistry Chemical Physics, 2017, 19, 29449-29460.	2.8	13
56	Determining the Properties of Novel Nanoporous Materials for the Evaluation of Process Performance in Carbon Capture Applications. Advanced Science Letters, 2017, 23, 6012-6014.	0.2	1
57	Development of an equilibrium theory solver applied to pressure swing adsorption cycles used in carbon capture processes. Computers and Chemical Engineering, 2016, 94, 18-27.	3.8	5
58	Cation Control of Molecular Sieving by Flexible Li-Containing Zeolite Rho. Journal of Physical Chemistry C, 2016, 120, 19652-19662.	3.1	45
59	CCS – A technology for now: general discussion. Faraday Discussions, 2016, 192, 125-151.	3.2	5
60	Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers. Green Energy and Environment, 2016, 1, 211-221.	8.7	15
61	End use and disposal of CO ₂ – storage or utilisation?: general discussion. Faraday Discussions, 2016, 192, 561-579.	3.2	10
62	Net, excess and absolute adsorption and adsorption of helium. Adsorption, 2016, 22, 261-276.	3.0	75
63	Accelerated degradation of MOFs under flue gas conditions. Faraday Discussions, 2016, 192, 181-195.	3.2	15
64	A Simple Graphical Check of Consistency forÂZero Length Column Desorption Curves. Chemical Engineering and Technology, 2016, 39, 1194-1198.	1.5	13
65	Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants: AMPGas. Industrial & Engineering Chemistry Research, 2016, 55, 3840-3851.	3.7	84
66	Modeling of Magnetic-Field-Assisted Fluidization: Model Development and CFD Simulation of Magnetically Stabilized Fluidized Beds. KONA Powder and Particle Journal, 2015, 32, 217-226.	1.7	5
67	Emerging CO2 capture systems. International Journal of Greenhouse Gas Control, 2015, 40, 126-166.	4.6	352
68	Ca–Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes. International Journal of Greenhouse Gas Control, 2015, 43, 198-212.	4.6	40
69	The effect of pore structure on the CO2 adsorption efficiency ofÂpolyamine impregnated porous carbons. Microporous and Mesoporous Materials, 2015, 208, 129-139.	4.4	58
70	Common tangent plane in mixed-gas adsorption. Fluid Phase Equilibria, 2015, 392, 49-55.	2.5	7
71	Work of separation in CO 2 capture: Applicability of the value function. Chemical Engineering Science, 2015, 126, 604-607.	3.8	3
72	Automatic estimation of kinetic and isotherm parameters from ZLC experiments. Chemical Engineering Science, 2015, 126, 616-624.	3.8	28

#	Article	IF	CITATIONS
73	Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant. International Journal of Greenhouse Gas Control, 2015, 39, 17-26.	4.6	75
74	Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Rapid Capacity Ranking of Novel Adsorbents. Industrial & Engineering Chemistry Research, 2015, 54, 6772-6780.	3.7	30
75	Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO ₂ adsorption. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 223-231.	0.8	13
76	CO2 capture from syngas by an adsorption process at a biomass gasification CHP plant: Its comparison with amine-based CO2 capture. International Journal of Greenhouse Gas Control, 2015, 35, 71-81.	4.6	68
77	Multi-objective optimisation using surrogate models for the design of VPSA systems. Computers and Chemical Engineering, 2015, 82, 318-329.	3.8	50
78	Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Study of Diffusion Behavior of CO ₂ in MOFs. Industrial & Engineering Chemistry Research, 2015, 54, 5777-5783.	3.7	28
79	Robust algorithms for the solution of the ideal adsorbed solution theory equations. AICHE Journal, 2015, 61, 981-991.	3.6	14
80	Development of Mixed Matrix Membranes Containing Zeolites for Post-combustion Carbon Capture Energy Procedia, 2014, 63, 160-166.	1.8	43
81	Techno-Economic Study of Adsorption Processes for Pre-Combustion Carbon Capture at a Biomass CHP Plant. Energy Procedia, 2014, 63, 6738-6744.	1.8	7
82	Inâ€situ Synchrotron IR Microspectroscopy of CO ₂ Adsorption on Single Crystals of the Functionalized MOF Sc ₂ (BDCâ€NH ₂) ₃ . Angewandte Chemie - International Edition, 2014, 53, 13483-13487.	13.8	42
83	A model for sound propagation between two adsorbing microporous plates. Journal of the Acoustical Society of America, 2014, 135, 2634-2645.	1.1	7
84	Process simulation of a dual-stage Selexol unit for pre-combustion carbon capture at an IGCC power plant. Energy Procedia, 2014, 63, 1751-1755.	1.8	19
85	An algorithm for the regression of the UNIQUAC interaction parameters in liquid–liquid equilibrium for single- and multi-temperature experimental data. Fluid Phase Equilibria, 2014, 374, 79-85.	2.5	6
86	A stand-alone solar adsorption refrigerator for humanitarian aid. Solar Energy, 2014, 100, 172-178.	6.1	49
87	Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption, 2014, 20, 121-135.	3.0	77
88	Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption, 2014, 20, 511-524.	3.0	71
89	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	30.8	1,765
90	Comparison of equations-of-state with P–Ï–T experimental data of binary mixtures rich in CO2 under the conditions of pipeline transport. Journal of Supercritical Fluids, 2014, 95, 474-490.	3.2	14

#	Article	IF	CITATIONS
91	Process and Cost Analysis of a Biomass Power Plant with in Situ Calcium Looping CO ₂ Capture Process. Industrial & Engineering Chemistry Research, 2014, 53, 10721-10733.	3.7	18
92	Novel Strategy to Produce Ultrapure Hydrogen from Coal with Pre-combustion Carbon Capture. Energy Procedia, 2014, 63, 2023-2030.	1.8	1
93	A Hybrid Carbon Capture System of Indirect Calcination and Amine Absorption for a Cement Plant. Energy Procedia, 2014, 63, 6428-6439.	1.8	8
94	Characterisation of an Automated Dual Piston Pressure Swing Adsorption (DP-PSA) System. Energy Procedia, 2013, 37, 57-64.	1.8	10
95	A Multiscale Study of MOFs as Adsorbents in H ₂ PSA Purification. Industrial & Engineering Chemistry Research, 2013, 52, 9946-9957.	3.7	63
96	Prediction ability of a new minimum bubbling criterion. Advanced Powder Technology, 2013, 24, 1-13.	4.1	3
97	Process integration of a Ca-looping carbon capture process in a cement plant. International Journal of Greenhouse Gas Control, 2013, 19, 530-540.	4.6	64
98	Detailed Process Simulation of Pre-combustion IGCC Plants Using Coal-slurry and Dry Coal Gasifiers. Energy Procedia, 2013, 37, 2196-2203.	1.8	18
99	Process Simulation of Aqueous MEA Plants for Post-combustion Capture from Coal-fired Power Plants. Energy Procedia, 2013, 37, 1523-1531.	1.8	17
100	Efficient and Rapid Screening of Novel Adsorbents for Carbon Capture in the UK IGSCC Project. Energy Procedia, 2013, 37, 40-47.	1.8	15
101	Two- and three-dimensional computational studies of liquid–solid fluidization. Powder Technology, 2013, 235, 180-191.	4.2	9
102	Process configuration studies of the amine capture process for coal-fired power plants. International Journal of Greenhouse Gas Control, 2013, 16, 29-40.	4.6	173
103	Efficient Simulation and Acceleration of Convergence for a Dual Piston Pressure Swing Adsorption System. Industrial & amp; Engineering Chemistry Research, 2013, 52, 8897-8905.	3.7	21
104	Analysis and Interpretation of Zero Length Column Response Curves. Chemie-Ingenieur-Technik, 2013, 85, 1714-1718.	0.8	13
105	Carbon Dioxide Capture from Air: A Simple Analysis. Energy and Environment, 2012, 23, 319-328.	4.6	28
106	Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases. Journal of the American Chemical Society, 2012, 134, 17628-17642.	13.7	158
107	Surrogate based Optimisation for Design of Pressure Swing Adsorption Systems. Computer Aided Chemical Engineering, 2012, 30, 1217-1221.	0.5	15
108	CFD simulation of flow pattern and jet penetration depth in gas-fluidized beds with single and double jets. Chemical Engineering Science, 2012, 68, 108-119.	3.8	26

Stefano B Brandani

#	Article	IF	CITATIONS
109	CFD simulation of dynamic characteristics in liquid–solid fluidized beds. Powder Technology, 2012, 227, 104-110.	4.2	32
110	Flowrate correction for the determination of isotherms and Darken thermodynamic factors from Zero Length Column (ZLC) experiments. Adsorption, 2011, 17, 687-694.	3.0	13
111	Mathematical description of pressure drop profile for the 1-valve and 2-valve bed collapse experiment. Chemical Engineering Science, 2011, 66, 973-981.	3.8	10
112	Macroscopic Measurement of Adsorption and Diffusion in Zeolites. , 2010, , 195-212.		3
113	Scaleâ€up strategy for the jetting fluidized bed using a CFD model based on twoâ€fluid theory. Canadian Journal of Chemical Engineering, 2009, 87, 204-210.	1.7	11
114	A multi-objective genetic algorithm for the design of pressure swing adsorption. Engineering Optimization, 2009, 41, 833-854.	2.6	40
115	Development of a Flowsheet Design Framework of Multi-Step PSA Cycles for CO2 Capture. Computer Aided Chemical Engineering, 2009, , 849-854.	0.5	3
116	Multicriteria Design framework for CO2 capture by multi-step PSA cycles. Computer Aided Chemical Engineering, 2009, 26, 603-608.	0.5	2
117	CFD simulation of fluidization quality in the three-dimensional fluidized bed. Progress in Natural Science: Materials International, 2008, 18, 729-733.	4.4	20
118	CFD Simulation of Fluid Dynamics in a Gas-Solid Jetting Fluidized Bed. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	5
119	Diffusion of n-alkanes in zeolites: the benefit of observation over different length scales. Studies in Surface Science and Catalysis, 2007, 170, 981-987.	1.5	3
120	On the properties of equations of state at infinite pressure. AICHE Journal, 2007, 53, 986-988.	3.6	2
121	Analysis of thermal effects in infrared and interference microscopy: n-Butane-5A and methanol–ferrierite systems. Microporous and Mesoporous Materials, 2007, 104, 18-25.	4.4	23
122	THE ZLC METHOD FOR DIFFUSION MEASUREMENTS. , 2007, , .		0
123	Diffusion of linear paraffins in NaCaA studied by the ZLC method. Microporous and Mesoporous Materials, 2006, 90, 278-283.	4.4	30
124	A new model for the prediction of the behaviour of fluidized beds. Powder Technology, 2006, 163, 80-87.	4.2	26
125	Computational fluid dynamics for dense gas-solid fluidized beds. Progress in Natural Science: Materials International, 2005, 15, 42-51.	4.4	20
126	A model for the interpretation of the bed collapse experiment. Powder Technology, 2005, 151, 37-43.	4.2	16

#	Article	IF	CITATIONS
127	Analysis of breakthrough dynamics in rectangular channels of arbitrary aspect ratio. AICHE Journal, 2005, 51, 1980-1990.	3.6	26
128	A New Numerical Method for Accurate Simulation of Fast Cyclic Adsorption Processes. Adsorption, 2005, 11, 113-122.	3.0	11
129	On the Chromatographic Measurement of Equilibrium Isotherms Using Large Concentration Steps. Adsorption, 2005, 11, 231-235.	3.0	11
130	Diffusivities of n-Alkanes in 5A Zeolite Measured by Neutron Spin Echo, Pulsed-Field Gradient NMR, and Zero Length Column Techniques. Adsorption, 2005, 11, 403-407.	3.0	55
131	A Simplified Model for Acoustic Measurement of Diffusion in Microporous Solids. Adsorption, 2005, 11, 433-436.	3.0	3
132	Dynamics of Carbon Dioxide Breakthrough in a Carbon Monolith Over a Wide Concentration Range. Adsorption, 2005, 11, 473-477.	3.0	23
133	Measurement of Diffusion in Microporous Solids by Macroscopic Methods. , 2005, , 45-84.		26
134	Adsorption Kinetics and Dynamic Behavior of a Carbon Monolith. Adsorption, 2004, 10, 99-109.	3.0	48
135	Extension of generalised mixing rules to cubic equations of state. Journal of Chemical Thermodynamics, 2004, 36, 949-956.	2.0	2
136	Liquid Phase Counter-Diffusion Measurements of Aromatics in Silicalite Using the ZLC Method. Adsorption, 2003, 9, 197-204.	3.0	7
137	Comments on "An Analytical Solution for the Analysis of Zero-Length-Column Experiments with Heat Effects― Industrial & Engineering Chemistry Research, 2003, 42, 2033-2033.	3.7	4
138	A generalization of the Foscolo and Gibilaro particle-bed model to predict the fluid bed stability of some fresh FCC catalysts at elevated temperatures. Chemical Engineering Science, 2001, 56, 5401-5412.	3.8	19
139	ZLC Measurements under non-linear conditions. Chemical Engineering Science, 2000, 55, 1205-1212.	3.8	49
140	Diffusion, self-diffusion and counter-diffusion of benzene and p-xylene in silicalite. Microporous and Mesoporous Materials, 2000, 35-36, 283-300.	4.4	55
141	Measurement of Diffusion in Porous Solids by Zero Length Column (ZLC) Methods. Membrane Science and Technology, 2000, 6, 187-212.	0.5	24
142	Counterdiffusion ofp-Xylene/Benzene andp-Xylene/o-Xylene in Silicalite Studied by the Zero-Length Column Technique. Industrial & Engineering Chemistry Research, 2000, 39, 821-828.	3.7	26
143	The flow pattern and residence time distribution for an endless belt solid–liquid contactor. Chemical Engineering Science, 1999, 54, 417-432.	3.8	2
144	Sorption and Diffusion of SF6 in Silicalite Crystals. Adsorption, 1999, 5, 369-372.	3.0	18

#	Article	IF	CITATIONS
145	Simple new EOS mixing rules which incorporate lattice fluid excess functions. Chemical Engineering Science, 1998, 53, 1041-1047.	3.8	3
146	The speed, direction and stability of concentration shocks in a fluidised bed. Chemical Engineering Science, 1998, 53, 1233-1238.	3.8	4
147	Effects of nonlinear equilibrium on zero length column experiments. Chemical Engineering Science, 1998, 53, 2791-2798.	3.8	57
148	Title is missing!. Adsorption, 1998, 4, 17-24.	3.0	39
149	Heat Effects in ZLC Experiments. Adsorption, 1998, 4, 275-285.	3.0	31
150	The Wong-Sandler mixing rules and EOS which are thermodynamically consistent at infinite pressure. Chemical Engineering Science, 1998, 53, 853-856.	3.8	12
151	Liquid phase sorption and diffusion of branched and cyclic hydrocarbons in silicalite. Microporous and Mesoporous Materials, 1998, 25, 81-93.	4.4	46
152	Equation of State Mixing Rules That Incorporate Only the Residual Part of the UNIQUAC Model. Industrial & Engineering Chemistry Research, 1998, 37, 2929-2935.	3.7	2
153	Diffusion in a unidimensional zeolite pore system: Propane in AlPO4-5. Microporous Materials, 1997, 8, 193-200.	1.6	14
154	Evaluation of the main diffusion path in zeolites from ZLC desorption curves. Zeolites, 1997, 18, 282-285.	0.5	24
155	Measurement of Diffusion in Microporous Solids by Macroscopic Methods. , 1997, , 261-296.		9
156	Moments Analysis of the Zero Length Column Method. Industrial & Engineering Chemistry Research, 1996, 35, 315-319.	3.7	15
157	Analysis of the discontinuities in magnetized bubbling fluidized beds. Chemical Engineering Science, 1996, 51, 4631-4637.	3.8	17
158	Analytical solution for ZLC desorption curves with bi-porous adsorbent particles. Chemical Engineering Science, 1996, 51, 3283-3288.	3.8	41
159	Jump conditions for one-dimensional two-phase shock waves in fluidised beds: The effect of the jump in fluid pressure. Chemical Engineering Science, 1996, 51, 4639-4647.	3.8	3
160	On the inapplicability of mixing rules based on the infinite pressure reference state for equations of state which use the hard-sphere repulsive term. Fluid Phase Equilibria, 1996, 121, 179-184.	2.5	11
161	Transport diffusion and self-diffusion of benzene in NaX and CaX zeolite crystals studied by ZLC and tracer ZLC methods. Microporous Materials, 1996, 7, 323-331.	1.6	48
162	Analysis of ZLC desorption curves for gaseous systems. Adsorption, 1996, 2, 133-143.	3.0	86

Stefano B Brandani

#	Article	IF	CITATIONS
163	Analysis of ZLC desorption curves for liquid systems. Chemical Engineering Science, 1995, 50, 2055-2059.	3.8	79
164	Self-diffusion of propane and propylene in 5A and 13X zeolite crystals studied by the tracer ZLC method. Zeolites, 1995, 15, 624-631.	0.5	80
165	Concentration dependence of self-diffusivity of methanol in NaX zeolite crystals. Zeolites, 1995, 15, 494-495.	0.5	57
166	Analysis of discontinuities arising from the one-dimensional equations of change for fluidization. Chemical Engineering Science, 1994, 49, 611-619.	3.8	13
167	A thermodynamic model for protein partitioning in reversed micellar systems. Chemical Engineering Science, 1994, 49, 3681-3686.	3.8	6
168	Measurement of Intracrystalline Diffusion by Zero Length Column Tracer Exchange. Studies in Surface Science and Catalysis, 1994, , 1323-1330.	1.5	14
169	Analysis of CO2 kinetics in Na,Cs-Rho crystals using the zero length column: a case study for slow systems. Brazilian Journal of Chemical Engineering, 0, , 1.	1.3	0
170	Extruded monoliths for gas separation processes: Height equivalent to a theoretical plate and pressure drop correlations. AICHE Journal, 0, , .	3.6	1