
Véronique A Dartois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2141073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical discussion on drug efflux in <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Reviews, 2022, 46, .	8.6	29
2	Cyclohexyl-griselimycin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0140021.	3.2	8
3	A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0221221.	3.2	13
4	Drug concentration at the site of disease in children with pulmonary tuberculosis. Journal of Antimicrobial Chemotherapy, 2022, 77, 1710-1719.	3.0	3
5	Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in <i>Mycobacterium abscessus</i> . Science Translational Medicine, 2022, 14, eabj3860.	12.4	15
6	Identification of β-Lactams Active against <i>Mycobacterium tuberculosis</i> by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infectious Diseases, 2022, 8, 557-573.	3.8	13
7	Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models. Antimicrobial Agents and Chemotherapy, 2022, 66, e0239821.	3.2	15
8	Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). European Journal of Medicinal Chemistry, 2022, 232, 114201.	5.5	4
9	Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201632119.	7.1	20
10	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	12.8	22
11	Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology, 2022, 20, 685-701.	28.6	142
12	Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue. Journal of Experimental Medicine, 2022, 219, .	8.5	16
13	CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nature Microbiology, 2022, 7, 766-779.	13.3	68
14	Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annual Review of Pharmacology and Toxicology, 2021, 61, 495-516.	9.4	30
15	An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. Journal of Mass Spectrometry, 2021, 56, e4708.	1.6	4
16	Therapeutic Potential of Fosmanogepix (APX001) for Intra-abdominal Candidiasis: from Lesion Penetration to Efficacy in a Mouse Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	16
17	DDRE-07. FATTY ACID SYNTHESIS IS REQUIRED FOR BREAST CANCER BRAIN METASTASIS. Neuro-Oncology Advances, 2021, 3, i7-i8.	0.7	0
18	A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	23

#	Article	IF	CITATIONS
19	Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer, 2021, 2, 414-428.	13.2	147
20	Potency boost of a <i>Mycobacterium tuberculosis</i> dihydrofolate reductase inhibitor by multienzyme F ₄₂₀ H ₂ -dependent reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
21	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
22	Structure, <i>In Vivo</i> Detection, and Antibacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate. ACS Infectious Diseases, 2021, 7, 2492-2507.	3.8	13
23	Abstract 90: Fatty acid synthesis is required for breast cancer brain metastasis. , 2021, , .		0
24	Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0067621.	3.2	14
25	Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrobial Agents and Chemotherapy, 2021, 65, e0058321.	3.2	33
26	Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrobial Agents and Chemotherapy, 2021, 65, e0002421.	3.2	12
27	Blocking Bacterial Naphthohydroquinone Oxidation and ADP-Ribosylation Improves Activity of Rifamycins against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0097821.	3.2	13
28	Bayesian Modeling and Intrabacterial Drug Metabolism Applied to Drug-Resistant <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2021, 7, 2508-2521.	3.8	8
29	A Ginger Root or Plum Model for the Tuberculosis "Granuloma�. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 505-507.	5.6	2
30	Lesion Penetration and Activity Limit the Utility of Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050621.	3.2	12
31	Correlative Imaging of Trace Elements and Intact Molecular Species in a Single-Tissue Sample at the 50 μm Scale. Analytical Chemistry, 2021, 93, 13450-13458.	6.5	6
32	A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0151421.	3.2	10
33	On-Slide Heat Sterilization Enables Mass Spectrometry Imaging of Tissue Infected with High-Threat Pathogens Outside of Biocontainment: A Study Directed at <i>Mycobacterium tuberculosis</i> . Journal of the American Society for Mass Spectrometry, 2021, 32, 2664-2674.	2.8	6
34	Kendrick Mass Defect Variation to Decipher Isotopic Labeling in Brain Metastases Studied by Mass Spectrometry Imaging. Analytical Chemistry, 2021, 93, 16314-16319.	6.5	2
35	Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Science Translational Medicine, 2021, 13, eabd8077.	12.4	38
36	Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. Journal of Infectious Diseases, 2020, 221, 1079-1087.	4.0	51

#	Article	IF	CITATIONS
37	Antitubercular Triazines: Optimization and Intrabacterial Metabolism. Cell Chemical Biology, 2020, 27, 172-185.e11.	5.2	22
38	Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	59
39	Indole Propionic Acid, an Unusual Antibiotic Produced by the Gut Microbiota, With Anti-inflammatory and Antioxidant Properties. Frontiers in Microbiology, 2020, 11, 575586.	3.5	49
40	Penetration of Ibrexafungerp (Formerly SCY-078) at the Site of Infection in an Intra-abdominal Candidiasis Mouse Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
41	Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Frontiers in Immunology, 2020, 11, 891.	4.8	25
42	Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. European Journal of Pharmaceutical Sciences, 2020, 151, 105421.	4.0	8
43	Potentiation of rifampin activity in a mouse model of tuberculosis by activation of host transcription factor EB. PLoS Pathogens, 2020, 16, e1008567.	4.7	8
44	A Preclinical Candidate Targeting Mycobacterium tuberculosis KasA. Cell Chemical Biology, 2020, 27, 560-570.e10.	5.2	20
45	Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clinical Microbiology Reviews, 2020, 33, .	13.6	63
46	Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis. MBio, 2020, 11, .	4.1	39
47	Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. Journal of Controlled Release, 2020, 321, 312-323.	9.9	29
48	Tissue Distribution of Doxycycline in Animal Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
49	TBAJ-876, a 3,5-Dialkoxypyridine Analogue of Bedaquiline, Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	34
50	Both Pharmacokinetic Variability and Granuloma Heterogeneity Impact the Ability of the First-Line Antibiotics to Sterilize Tuberculosis Granulomas. Frontiers in Pharmacology, 2020, 11, 333.	3.5	26
51	Early Bactericidal Activity Trial of Nitazoxanide for Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
52	Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis in Rabbits and Humans. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37
53	Editorial: NTM—The New Uber-Bugs. Frontiers in Microbiology, 2019, 10, 1299.	3.5	7
54	Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature Communications, 2019, 10, 4970.	12.8	82

#	Article	IF	CITATIONS
55	Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in Pharmacological Sciences, 2019, 40, 930-940.	8.7	35
56	Phase variation in <i>Mycobacterium tuberculosis glpK</i> produces transiently heritable drug tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19665-19674.	7.1	96
57	Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opinion on Drug Discovery, 2019, 14, 867-878.	5.0	49
58	Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. Journal of Cystic Fibrosis, 2019, 18, 714-720.	0.7	46
59	Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2019, 5, 1433-1445.	3.8	11
60	Fluoroquinolone Efficacy against Tuberculosis Is Driven by Penetration into Lesions and Activity against Resident Bacterial Populations. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	42
61	Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in <i>Mycobacterium tuberculosis</i> . MBio, 2019, 10, .	4.1	63
62	Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Medicine, 2019, 16, e1002773.	8.4	139
63	Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma. Journal of Antibiotics, 2019, 72, 469-475.	2.0	0
64	Optimization of N-benzyl-5-nitrofuran-2-carboxamide as an antitubercular agent. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 601-606.	2.2	9
65	Investigation of (<i>S</i>)-(â^')-Acidomycin: A Selective Antimycobacterial Natural Product That Inhibits Biotin Synthase. ACS Infectious Diseases, 2019, 5, 598-617.	3.8	22
66	Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	79
67	Targeting protein biotinylation enhances tuberculosis chemotherapy. Science Translational Medicine, 2018, 10, .	12.4	24
68	Visualization of Mycobacterial Biomarkers and Tuberculosis Drugs in Infected Tissue by MALDI-MS Imaging. Analytical Chemistry, 2018, 90, 6275-6282.	6.5	55
69	Pharmacokinetics of rifapentine and rifampin in a rabbit model of tuberculosis and correlation with clinical trial data. Science Translational Medicine, 2018, 10, .	12.4	40
70	NTM drug discovery: status, gaps and the way forward. Drug Discovery Today, 2018, 23, 1502-1519.	6.4	186
71	Novel Pyrimidines as Antitubercular Agents. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
72	Spatial Quantification of Drugs in Pulmonary Tuberculosis Lesions by Laser Capture Microdissection Liquid Chromatography Mass Spectrometry (LCM-LC/MS). Journal of Visualized Experiments, 2018, , .	0.3	32

#	Article	IF	CITATIONS
73	Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. Journal of Antimicrobial Chemotherapy, 2018, 73, 1755-1762.	3.0	32
74	Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	49
75	Synergistic Lethality of a Binary Inhibitor of Mycobacterium tuberculosis KasA. MBio, 2018, 9, .	4.1	37
76	An explant technique for high-resolution imaging and manipulation of mycobacterial granulomas. Nature Methods, 2018, 15, 1098-1107.	19.0	43
77	Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1006974.	4.7	50
78	Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 2018, 14, e1007223.	4.7	75
79	Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry. Current Opinion in Chemical Biology, 2018, 44, 93-100.	6.1	33
80	Teicoplanin – Tigecycline Combination Shows Synergy Against Mycobacterium abscessus. Frontiers in Microbiology, 2018, 9, 932.	3.5	19
81	Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental Medicine, 2018, 215, 1975-1986.	8.5	29
82	TB drug susceptibility is more than MIC. Nature Microbiology, 2018, 3, 971-972.	13.3	6
83	Indolyl Azaspiroketal Mannich Bases Are Potent Antimycobacterial Agents with Selective Membrane Permeabilizing Effects and in Vivo Activity. Journal of Medicinal Chemistry, 2018, 61, 5733-5750.	6.4	28
84	Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	159
85	Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. ELife, 2018, 7, .	6.0	25
86	High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. ELife, 2018, 7, .	6.0	45
87	In Vivo-Selected Pyrazinoic Acid-Resistant <i>Mycobacterium tuberculosis</i> Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infectious Diseases, 2017, 3, 492-501.	3.8	33
88	Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	119
89	Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nature Microbiology, 2017, 2, 17072.	13.3	222
90	Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infectious Diseases, 2017, 3, 807-819.	3.8	52

#	Article	IF	CITATIONS
91	NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans. Scientific Reports, 2017, 7, 8853.	3.3	22
92	An In Vitro Caseum Binding Assay that Predicts Drug Penetration in Tuberculosis Lesions. Journal of Visualized Experiments, 2017, , .	0.3	17
93	Ethambutol Partitioning in Tuberculous Pulmonary Lesions Explains Its Clinical Efficacy. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	65
94	Unraveling Drug Penetration of Echinocandin Antifungals at the Site of Infection in an Intra-abdominal Abscess Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	73
95	Coadministration of Allopurinol To Increase Antimycobacterial Efficacy of Pyrazinamide as Evaluated in a Whole-Blood Bactericidal Activity Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	14
96	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
97	Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Research, 2017, 19, 107.	5.0	19
98	Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach. PLoS Computational Biology, 2017, 13, e1005650.	3.2	57
99	Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infectious Diseases, 2016, 2, 616-626.	3.8	83
100	New Evidence for the Complexity of the Population Structure of <i>Mycobacterium tuberculosis</i> Increases the Diagnostic and Biologic Challenges. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1448-1451.	5.6	21
101	High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4197-4205.	3.2	21
102	Development and validation of LC-ESI-MS/MS method for analysis of moxifloxacin and levofloxacin in serum of multidrug-resistant tuberculosis patients: Potential application as therapeutic drug monitoring tool in medical diagnosis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1009-1010, 138-143.	2.3	14
103	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	30.7	273
104	Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model. EBioMedicine, 2016, 4, 104-114.	6.1	59
105	Novel Cephalosporins Selectively Active on Nonreplicating <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 6027-6044.	6.4	45
106	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	8.5	169
107	Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases, 2016, 2, 552-563.	3.8	110
108	Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in <i>Mycobacterium tuberculosis</i> Infected C3HeB/FeJ Mice. ACS Infectious Diseases, 2016, 2, 251-267.	3.8	111

#	Article	IF	CITATIONS
109	Selective Inactivity of Pyrazinamide against Tuberculosis in C3HeB/FeJ Mice Is Best Explained by Neutral pH of Caseum. Antimicrobial Agents and Chemotherapy, 2016, 60, 735-743.	3.2	62
110	Statin adjunctive therapy shortens the duration of TB treatment in mice. Journal of Antimicrobial Chemotherapy, 2016, 71, 1570-1577.	3.0	87
111	Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 270-277.	3.2	98
112	In silico evaluation and exploration of antibiotic tuberculosis treatment regimens. BMC Systems Biology, 2015, 9, 79.	3.0	41
113	Pharmacokinetic-Pharmacodynamic Analysis of Spiroindolone Analogs and KAE609 in a Murine Malaria Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1200-1210.	3.2	15
114	Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. EBioMedicine, 2015, 2, 1627-1633.	6.1	93
115	Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunological Reviews, 2015, 264, 288-307.	6.0	287
116	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	3.8	71
117	Determination of [¹¹ C]Rifampin Pharmacokinetics within Mycobacterium tuberculosis-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging. Antimicrobial Agents and Chemotherapy, 2015, 59, 5768-5774.	3.2	47
118	The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 2015, 21, 1223-1227.	30.7	387
119	A Sterilizing Tuberculosis Treatment Regimen Is Associated with Faster Clearance of Bacteria in Cavitary Lesions in Marmosets. Antimicrobial Agents and Chemotherapy, 2015, 59, 4181-4189.	3.2	59
120	A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. Journal of Theoretical Biology, 2015, 367, 166-179.	1.7	68
121	Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. International Journal of Mass Spectrometry, 2015, 377, 699-708.	1.5	60
122	Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. Journal of Antimicrobial Chemotherapy, 2015, 70, 857-867.	3.0	129
123	PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Science Translational Medicine, 2014, 6, 265ra167.	12.4	116
124	The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nature Reviews Microbiology, 2014, 12, 159-167.	28.6	328
125	Metabolic Imaging through Continuous In Situ Micro-extractions of Tissue Samples via Flowprobe Mass Spectrometry. Current Metabolomics, 2014, 2, 122-131.	0.5	9
126	A medicinal chemists' guide to the unique difficulties of lead optimization for tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4741-4750.	2.2	93

#	Article	IF	CITATIONS
127	Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing. Cell, 2013, 155, 1296-1308.	28.9	296
128	Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3903-3909.	3.2	67
129	Radiologic Responses in Cynomolgus Macaques for Assessing Tuberculosis Chemotherapy Regimens. Antimicrobial Agents and Chemotherapy, 2013, 57, 4237-4244.	3.2	156
130	Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Science Translational Medicine, 2013, 5, 214ra168.	12.4	134
131	Reduced Drug Uptake in Phenotypically Resistant Nutrient-Starved Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 1648-1653.	3.2	133
132	Polyamines Inhibit Porin-Mediated Fluoroquinolone Uptake in Mycobacteria. PLoS ONE, 2013, 8, e65806.	2.5	23
133	The Role of Transport Mechanisms in Mycobacterium Tuberculosis Drug Resistance and Tolerance. Pharmaceuticals, 2012, 5, 1210-1235.	3.8	73
134	Pharmacokinetic Evaluation of the Penetration of Antituberculosis Agents in Rabbit Pulmonary Lesions. Antimicrobial Agents and Chemotherapy, 2012, 56, 446-457.	3.2	154
135	Linezolid for Treatment of Chronic Extensively Drug-Resistant Tuberculosis. New England Journal of Medicine, 2012, 367, 1508-1518.	27.0	496
136	Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [¹⁸ F]2-Fluoro-Deoxy- <scp>d</scp> -Glucose Positron Emission Tomography and Computed Tomography. Antimicrobial Agents and Chemotherapy, 2012, 56, 4391-4402.	3.2	89
137	Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis, 2012, 92, 453-488.	1.9	193
138	Metronidazole prevents reactivation of latent <i>Mycobacterium tuberculosis</i> infection in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14188-14193.	7.1	109
139	Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Molecular Medicine, 2012, 4, 27-37.	6.9	61
140	High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions. Analytical Chemistry, 2011, 83, 2112-2118.	6.5	235
141	Structure–Activity Relationships of Antitubercular Nitroimidazoles. 3. Exploration of the Linker and Lipophilic Tail of ((<i>S</i>)-2-Nitro-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-Amino PA-824) Journal of Medicinal Chemistry. 2011. 54, 5639-5659.	6.4	38
142	Experimental Tuberculosis in the Wistar Rat: A Model for Protective Immunity and Control of Infection. PLoS ONE, 2011, 6, e18632.	2.5	39
143	BCG Induces Protection against Mycobacterium tuberculosis Infection in the Wistar Rat Model. PLoS ONE, 2011, 6, e28082.	2.5	14
144	Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat. Tuberculosis, 2011, 91, 339-341.	1.9	19

#	Article	IF	CITATIONS
145	Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents. Journal of Medicinal Chemistry, 2011, 54, 5116-5130.	6.4	91
146	Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 1409-1419.	2.8	65
147	Drug Forgiveness and Interpatient Pharmacokinetic Variability in Tuberculosis. Journal of Infectious Diseases, 2011, 204, 1827-1829.	4.0	14
148	T Cell Monitoring of Chemotherapy in Experimental Rat Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3677-3683.	3.2	8
149	Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs. PLoS Pathogens, 2011, 7, e1002262.	4.7	83
150	Preclinical Evaluation of the Antifolate QN254, 5-Chloro- <i>N</i> ′6′-(2,5-Dimethoxy-Benzyl)-Quinazoline-2,4,6-Triamine, as an Antimalarial Drug Candidate. Antimicrobial Agents and Chemotherapy, 2010, 54, 2603-2610.	3.2	25
151	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
152	Spectrum of latent tuberculosis — existing tests cannot resolve the underlying phenotypes: author's reply. Nature Reviews Microbiology, 2010, 8, 242-242.	28.6	15
153	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	12.8	250
154	Inhibition of Dengue Virus by an Ester Prodrug of an Adenosine Analog. Antimicrobial Agents and Chemotherapy, 2010, 54, 3255-3261.	3.2	48
155	Clinical Pharmacology and Lesion Penetrating Properties of Second- and Third-Line Antituberculous Agents Used in the Management of Multidrug-Resistant (MDR) and Extensively-Drug Resistant (XDR) Tuberculosis. Current Clinical Pharmacology, 2010, 5, 96-114.	0.6	39
156	Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. Journal of Medicinal Chemistry, 2010, 53, 5155-5164.	6.4	381
157	The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 2009, 7, 845-855.	28.6	1,179
158	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	7.1	323
159	Phenolic Acid-Mediated Regulation of the <i>padC</i> Gene, Encoding the Phenolic Acid Decarboxylase of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2008, 190, 3213-3224.	2.2	65
160	Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2008, 62, 713-719.	3.0	92
161	Peptide Deformylase Inhibitors as Potent Antimycobacterial Agents. Antimicrobial Agents and Chemotherapy, 2006, 50, 3665-3673.	3.2	50
162	Systemic Antibacterial Activity of Novel Synthetic Cyclic Peptides. Antimicrobial Agents and Chemotherapy, 2005, 49, 3302-3310.	3.2	144

#	Article	IF	CITATIONS
163	Dissection of the Functional and Structural Domains of Phosphorelay Histidine Kinase A of Bacillus subtilis. Journal of Bacteriology, 2001, 183, 2795-2802.	2.2	39
164	Cloning of branched chain amino acid biosynthesis genes and assays of α-acetolactate synthase activities in Leuconostoc mesenteroides subsp. cremoris. Research in Microbiology, 1999, 150, 189-198.	2.1	9
165	ClpP ofBacillus subtilisis required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Molecular Microbiology, 1998, 27, 899-914.	2.5	210
166	Alterations in the flow of oneâ€carbon units affect KinBâ€dependent sporulation in Bacillus subtilis. Molecular Microbiology, 1997, 25, 39-51.	2.5	23
167	KapB is a lipoprotein required for KinB signal transduction and activation of the phosphorelay to sporulation in Bacillus subtilis. Molecular Microbiology, 1997, 26, 1097-1108.	2.5	41
168	The structure–function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Engineering, Design and Selection, 1994, 7, 523-529.	2.1	32
169	Sequence of the Salmonella typhimurium StyLT1 restriction-modification genes: homologies with EcoP1 and EcoP15 type-III R-M systems and presence of helicase domains. Gene, 1993, 127, 105-110.	2.2	24