Yin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2140463/publications.pdf

Version: 2024-02-01

623734 610901 43 590 14 24 h-index citations g-index papers 44 44 44 751 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Navigated Delivery of Peptide to the Nanopore Using In-Plane Heterostructures of MoS ₂ and SnS ₂ for Protein Sequencing. Journal of Physical Chemistry Letters, 2022, 13, 3863-3872.	4.6	11
2	Encoding Manipulation of DNAâ€Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores. Small Methods, 2022, 6, .	8.6	11
3	Screening of Short Single- and Double-stranded DNA Molecules Using Silicon Nitride Nanopores. , 2022, , .		O
4	Velocity control of protein translocation through a nanopore by tuning the fraction of benzenoid residues. Nanoscale, 2021, 13, 15352-15361.	5.6	12
5	Detection and Separation of Single-Stranded DNA Fragments Using Solid-State Nanopores. Journal of Physical Chemistry Letters, 2021, 12, 6469-6477.	4.6	10
6	Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis. Nanomaterials, 2021, 11, 2450.	4.1	2
7	Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution. Coatings, 2020, 10, 872.	2.6	O
8	Sequence-Specific Detection of DNA Strands Using a Solid-State Nanopore Assisted by Microbeads. Micromachines, 2020, 11 , 1097 .	2.9	1
9	Inside Back Cover: Detergentâ€Assisted Braking of Peptide Translocation through a Singleâ€Layer Molybdenum Disulfide Nanopore (Small Methods 11/2020). Small Methods, 2020, 4, 2070043.	8.6	O
10	A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System. ACS Nano, 2020, 14, 15349-15360.	14.6	30
11	Concentration effects on capture rate and translocation configuration of nanoporeâ€based DNA detection. Electrophoresis, 2020, 41, 1523-1528.	2.4	2
12	Detergentâ€Assisted Braking of Peptide Translocation through a Single‣ayer Molybdenum Disulfide Nanopore. Small Methods, 2020, 4, 1900822.	8.6	16
13	Electroosmotic Facilitated Protein Capture and Transport through Solidâ€State Nanopores with Diameter Larger than Length. Small Methods, 2020, 4, 1900893.	8.6	26
14	Fabrication of Small-Scale Solid-State Nanopores by Dielectric Breakdown. , 2020, , .		O
15	Mechanical Properties of Magnetic-Field-Assisted Electrospun Poly(vinylidene fluoride) (PVDF) Nanofibers. , 2020, , .		O
16	Discrimination of Protein Amino Acid or Its Protonated State at Singleâ€Residue Resolution by Graphene Nanopores. Small, 2019, 15, e1900036.	10.0	33
17	Discrimination of singleâ€stranded DNA homopolymers by sieving out Gâ€quadruplex using tiny solidâ€state nanopores. Electrophoresis, 2019, 40, 2117-2124.	2.4	10
18	Effects of Microchannel Cross-section Shape on Particle Focusing. , 2019, , .		1

#	Article	IF	CITATIONS
19	Computational modeling of ionic currents through difform graphene nanopores with consistent cross-sectional areas. Physical Chemistry Chemical Physics, 2019, 21, 26166-26174.	2.8	5
20	Molecule Concentration Dependence of DNA Translocation Configuration through Solid-state Nanopores. , 2019, , .		0
21	Mechanisms of pressure-induced water infiltration process through graphene nanopores. Molecular Simulation, 2019, 45, 518-524.	2.0	3
22	Thermal Transport in Quasi-1D van der Waals Crystal Ta ₂ Pd ₃ Se ₈ Nanowires: Size and Length Dependence. ACS Nano, 2018, 12, 2634-2642.	14.6	61
23	Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups. Soft Matter, 2018, 14, 9534-9541.	2.7	27
24	Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Nanoscale, 2018, 10, 19450-19458.	5.6	37
25	A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomedical Microdevices, 2017, 19, 38.	2.8	8
26	Salt Gradient Improving Signal-to-Noise Ratio in Solid-State Nanopore. ACS Sensors, 2017, 2, 506-512.	7.8	27
27	Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Nanoscale, 2017, 9, 930-939.	5.6	32
28	Investigation on the interaction length and access resistance of a nanopore with an atomic force microscopy. Science China Technological Sciences, 2017, 60, 552-560.	4.0	12
29	A rapid and simple method to draw polyethylene nanofibers with enhanced thermal conductivity. Applied Physics Letters, 2016, 109, .	3.3	24
30	Thermal conductivity of individual silicon nanoribbons. Nanoscale, 2016, 8, 17895-17901. Detection of short single-strand DNA homopolymers with ultrathin small math	5.6	54
31	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow> nanopores.	2.1	16
32	Physical Review F. 2015, 92, 022719. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons. Nanoscale, 2015, 7, 6683-6690.	5.6	43
33	Thermal conductivity of zinc blende and wurtzite CdSe nanostructures. Nanoscale, 2015, 7, 16071-16078.	5.6	11
34	Temperature effect on translocation speed and capture rate of nanopore-based DNA detection. Science China Technological Sciences, 2015, 58, 519-525.	4.0	10
35	Retarding and manipulating of DNA molecules translocation through nanopores. Science Bulletin, 2014, 59, 4908-4917.	1.7	7
36	Integrated solid-state nanopore devices for third generation DNA sequencing. Science China Technological Sciences, 2014, 57, 1925-1935.	4.0	7

#	Article	IF	CITATION
37	DNA sequencing technology based on nanopore sensors by theoretical calculations and simulations. Science Bulletin, 2014, 59, 4929-4941.	1.7	12
38	A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus. Microscopy Research and Technique, 2014, 77, 851-856.	2.2	1
39	Nanopore detection of DNA molecules in magnesium chloride solutions. Nanoscale Research Letters, 2013, 8, 245.	5.7	27
40	The Molecular Dynamics Study for Detection of ssDNA by Monolayer Graphene Nanopore. , 2013, , .		0
41	Fabrication of Al2O3 Nanopore Sensors for DNA Detection., 2013,,.		0
42	Nanopore Positive Pulse Detection of DNA with Salt Gradients. Key Engineering Materials, 0, 656-657, 567-572.	0.4	0
43	Concentration Gradient Effect on the Capturing Ratio of Nanopore for DNA. Key Engineering Materials, 0, 656-657, 554-560.	0.4	0