Pietro Cataldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2140122/publications.pdf Version: 2024-02-01

DIETRO CATALDI

#	Article	IF	CITATIONS
1	3D cellulose fiber networks modified by PEDOT:PSS/graphene nanoplatelets for thermoelectric applications. Applied Physics Letters, 2022, 120, .	3.3	13
2	An Electrically Conductive Oleogel Paste for Edible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	26
3	A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Advanced Materials Technologies, 2022, 7, .	5.8	11
4	Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes. Advanced Functional Materials, 2022, 32, .	14.9	52
5	High-performance fluoroelastomer-graphene nanocomposites for advanced sealing applications. Composites Science and Technology, 2021, 202, 108592.	7.8	18
6	Zinc Polyaleuritate Ionomer Coatings as a Sustainable, Alternative Technology for Bisphenol A-Free Metal Packaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 15484-15495.	6.7	4
7	Green Biocomposites for Thermoelectric Wearable Applications. Advanced Functional Materials, 2020, 30, 1907301.	14.9	74
8	Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Applied Polymer Materials, 2020, 2, 3525-3534.	4.4	44
9	Graphene–Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding. Advanced Electronic Materials, 2020, 6, 2000429.	5.1	25
10	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	9.1	98
11	Plant-Inspired Polyaleuritate–Nanocellulose Composite Photonic Films. ACS Applied Polymer Materials, 2020, 2, 1528-1534.	4.4	10
12	Sustainable, High-Barrier Polyaleuritate/Nanocellulose Biocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 10682-10690.	6.7	9
13	Hybrid Graphene/Carbon Nanofiber Wax Emulsion for Paperâ€Based Electronics and Thermal Management. Advanced Electronic Materials, 2020, 6, 2000232.	5.1	24
14	Preventing Water-Induced Mechanical Deterioration of Cardboard by a Sequential Polymer Treatment. Industrial & Engineering Chemistry Research, 2019, 58, 6456-6465.	3.7	9
15	Carbon Nanofiber versus Grapheneâ€Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin. Advanced Science, 2018, 5, 1700587.	11.2	100
16	Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7, 105-112.	4.7	51
17	Electronic Skin: Carbon Nanofiber versus Grapheneâ€Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin (Adv. Sci. 2/2018). Advanced Science, 2018, 5, 1870011.	11.2	5
18	Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Applied Sciences (Switzerland), 2018, 8, 1438.	2.5	201

PIETRO CATALDI

#	Article	IF	CITATIONS
19	Sustainable Electronics Based on Crop Plant Extracts and Graphene: A "Bioadvantaged―Approach. Advanced Sustainable Systems, 2018, 2, 1800069.	5.3	27
20	Allâ€Natural Sustainable Packaging Materials Inspired by Plant Cuticles. Advanced Sustainable Systems, 2017, 1, 1600024.	5.3	50
21	Healable Cotton–Graphene Nanocomposite Conductor for Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13825-13830.	8.0	81
22	Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles. Applied Physics Letters, 2017, 110, .	3.3	32
23	Packaging Materials: Allâ€Natural Sustainable Packaging Materials Inspired by Plant Cuticles (Adv.) Tj ETQq1 1 0.	784314 rg	gBT /Overlo <mark>c</mark> i
24	Cellulosic Graphene Biocomposites for Versatile Highâ€Performance Flexible Electronic Applications. Advanced Electronic Materials, 2016, 2, 1600245.	5.1	39
25	Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymers. Carbon, 2016, 109, 331-339.	10.3	44
26	A Thermochromic Superhydrophobic Surface. Scientific Reports, 2016, 6, 27984.	3.3	21
27	Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplateletâ€Bioâ€Based Composites. Advanced Electronic Materials, 2015, 1, 1500224.	5.1	54
28	Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devices. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	14