John Arron Stride

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Efficiency of Organic Solar Cells by Seeded Control of the Molecular Morphology in the Active Layer. Solar Rrl, 2022, 6, .	5.8	5
2	Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate. Nano Research, 2022, 15, 7646-7654.	10.4	2
3	Seeded Growth of Ultrathin Carbon Films Directly onto Silicon Substrates. ACS Omega, 2021, 6, 8829-8836.	3.5	4
4	Simultaneous Fe3O4 Nanoparticle Formation and Catalyst-Driven Hydrothermal Cellulose Degradation. ACS Omega, 2021, 6, 10790-10800.	3.5	4
5	Using charcoal, ATR FTIR and chemometrics to model the intensity of pyrolysis: Exploratory steps towards characterising fire events. Science of the Total Environment, 2021, 783, 147052.	8.0	18
6	11.6% Efficient Pure Sulfide Cu(In,Ga)S ₂ Solar Cell through a Cu-Deficient and KCN-Free Process. ACS Applied Energy Materials, 2020, 3, 11974-11980.	5.1	8
7	Magnetic Phase Transitions in a Ni 4 O 4 ubaneâ€Based Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 7589-7594.	3.3	5
8	High openâ€circuit voltage CuSbS ₂ solar cells achieved through the formation of epitaxial growth of CdS/CuSbS ₂ heteroâ€interface by postâ€annealing treatment. Progress in Photovoltaics: Research and Applications, 2019, 27, 37-43.	8.1	26
9	Improvement of Csâ€(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} Quality Via DMSOâ€Moleculeâ€Control to Increase the Efficiency and Boost the Longâ€Term Stability of 1 cm ² Sized Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800338.	5.8	21
10	Neutron Scattering in Coordination Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 1057-1059.	2.0	0
11	Nanoparticles for Bioapplications: Study of the Cytotoxicity of Water Dispersible CdSe(S) and CdSe(S)/ZnO Quantum Dots. Nanomaterials, 2019, 9, 465.	4.1	20
12	Solution-processed ultrathin SnO2 passivation of Absorber/Buffer Heterointerface and Grain Boundaries for High Efficiency Kesterite Cu2ZnSnS4 Solar Cells. , 2019, , .		0
13	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	19.5	186
14	Pd–Ag decorated g-C ₃ N ₄ as an efficient photocatalyst for hydrogen production from water under direct solar light irradiation. Catalysis Science and Technology, 2018, 8, 1183-1193.	4.1	104
15	Efficiency Enhancement of Kesterite Cu ₂ ZnSnS ₄ Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface. ACS Applied Energy Materials, 2018, 1, 154-160.	5.1	53
16	Minority lifetime and efficiency improvement for CZTS solar cells via Cd ion soaking and post treatment. Journal of Alloys and Compounds, 2018, 750, 328-332.	5.5	31
17	Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Solar Energy Materials and Solar Cells, 2018, 182, 14-20.	6.2	49
18	Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO ₂ buffer layer. Journal of Materials Chemistry C, 2018, 6, 9861-9866.	5.5	20

#	Article	IF	CITATIONS
19	Self-assembled Nanometer-Scale ZnS Structure at the CZTS/ZnCdS Heterointerface for High-Efficiency Wide Band Gap Cu ₂ ZnSnS ₄ Solar Cells. Chemistry of Materials, 2018, 30, 4008-4016.	6.7	37
20	Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018, 3, 764-772.	39.5	623
21	Titania supported MOF-199 derived Cu–Cu ₂ O nanoparticles: highly efficient non-noble metal photocatalysts for hydrogen production from alcohol–water mixtures. Catalysis Science and Technology, 2017, 7, 677-686.	4.1	58
22	Spatial Grain Growth and Composition Evolution during Sulfurizing Metastable Wurtzite Cu ₂ ZnSnS ₄ Nanocrystal-Based Coatings. Chemistry of Materials, 2017, 29, 2110-2121.	6.7	11
23	Magnetic Properties of the Distorted Kagomé Lattice Mn3(1,2,4-(O2C)3C6H3)2. Inorganic Chemistry, 2017, 56, 7851-7860.	4.0	2
24	Beyond 11% Efficient Sulfide Kesterite Cu ₂ Zn _{<i>x</i>} Cd _{1–<i>x</i>} SnS ₄ Solar Cell: Effects of Cadmium Alloying. ACS Energy Letters, 2017, 2, 930-936.	17.4	249
25	Porous Carbon/rGO Composite: An Ideal Support Material of Highly Efficient Palladium Electrocatalysts for the Formic Acid Oxidation Reaction. ChemElectroChem, 2017, 4, 3126-3133.	3.4	27
26	A New Passivation Route Leading to Over 8% Efficient PbSe Quantumâ€Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Advanced Materials, 2017, 29, 1703214.	21.0	69
27	Controlled Synthesis of TiO ₂ Nanostructures: Exceptional Hydrogen Production in Alcohol-Water Mixtures over Cu(OH) ₂ -Ni(OH) ₂ /TiO ₂ Nanorods. ChemistrySelect, 2017, 2, 7497-7507.	1.5	8
28	Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials, 2017, 9, e401-e401.	7.9	118
29	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr ₃ Perovskite Colloidal Nanocrystal Back Layer. Advanced Energy Materials, 2017, 7, 1601773.	19.5	56
30	Oxygen substitution and sulfur vacancies in NaBiS2: a Pb-free candidate for solution processable solar cells. , 2017, , .		2
31	Nanoscale Microstructure and Chemistry of Cu ₂ ZnSnS ₄ /CdS Interface in Kesterite Cu ₂ ZnSnS ₄ Solar Cells. Advanced Energy Materials, 2016, 6, 1600706.	19.5	113
32	Over 9% Efficient Kesterite Cu ₂ ZnSnS ₄ Solar Cell Fabricated by Using Zn _{1–} <i>_x</i> Cd <i>_x</i> S Buffer Layer. Advanced Energy Materials, 2016, 6, 1600046.	19.5	322
33	Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost. Applied Physics Letters, 2016, 109, .	3.3	32
34	Dynamics of the frustrated spin in the low dimensional magnet Co3(OH)2(C4O4)2. Journal of Physics Condensed Matter, 2016, 28, 126005.	1.8	2
35	Achirality in the low temperature structure and lattice modes of tris(acetylacetonate)iron(iii). Dalton Transactions, 2016, 45, 8278-8283.	3.3	0
36	Understanding the Key Factors of Enhancing Phase and Compositional Controllability for 6% Efficient Pure-Sulfide Cu ₂ ZnSnS ₄ Solar Cells Prepared from Quaternary Wurtzite Nanocrystals. Chemistry of Materials, 2016, 28, 3649-3658.	6.7	32

#	Article	IF	CITATIONS
37	La ₂ O ₃ Promoted Pd/rGO Electro-catalysts for Formic Acid Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 32581-32590.	8.0	46
38	Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Solar Energy Materials and Solar Cells, 2016, 144, 700-706.	6.2	101
39	Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity. Materials Science and Engineering C, 2016, 64, 167-172.	7.3	30
40	Synthesis of type-II CdSe(S)/Fe2O3 core/shell quantum dots: the effect of shell on the properties of core/shell quantum dots. Journal of Materials Science, 2016, 51, 5252-5258.	3.7	14
41	A low temperature reduction of CCl4 to solid and hollow carbon nanospheres using metallic sodium. Materials Chemistry and Physics, 2015, 154, 38-43.	4.0	6
42	Phase transformations in CdSe quantum dots induced by reaction time. Materials Letters, 2015, 141, 67-69.	2.6	0
43	Understanding the packing in the 1 : 1 molecular complex 1,3,5-tricyanobenzene–hexamethylbenzene probing lattice modes. CrystEngComm, 2015, 17, 3787-3792.	by 2.6	2
44	Effect of Halide Treatments on PbSe Quantum Dot Thin Films: Stability, Hot Carrier Lifetime, and Application to Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 24149-24155.	3.1	40
45	Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr ₂ precursor. RSC Advances, 2015, 5, 68579-68586.	3.6	27
46	Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu ₂ ZnSnS ₄ solar cells by forming nearly micron-sized large grains. Journal of Materials Chemistry A, 2015, 3, 23185-23193.	10.3	32
47	Kesterite Cu ₂ ZnSnS ₄ thin film solar cells by a facile DMF-based solution coating process. Journal of Materials Chemistry C, 2015, 3, 10783-10792.	5.5	61
48	Effect of acid or alkaline catalyst and of different capping agents on the optical properties of CdS nanoparticles incorporated within a diureasil hybrid matrix. Optical Materials, 2015, 49, 171-181.	3.6	4
49	What Difference Does a Methyl Group Make: Pentamethylbenzene?. ChemPhysChem, 2014, 15, 3776-3781.	2.1	6
50	The investigation of optical properties of water soluble quantum dots in a quantum dot-antibody conjugated compound. , 2014, , .		0
51	Synthesis of an optically clear, flexible and stable hybrid ureasilicate matrix doped with CdSe nanoparticles produced by reverse micelles. Materials Chemistry and Physics, 2014, 147, 86-94.	4.0	7
52	One-pot synthesis of CdSe nanoparticles exhibiting quantum size effect within a sol–gel derived ureasilicate matrix. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 285, 21-29.	3.9	14
53	Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4. Applied Physics Letters, 2014, 104, .	3.3	148
54	Deposition of CdSe quantum dots on graphene sheets. Journal of Luminescence, 2014, 146, 46-52.	3.1	9

#	Article	IF	CITATIONS
55	Influence of Cd 2+ /S 2â^' molar ratio and of different capping environments in the optical properties of CdS nanoparticles incorporated within a hybrid diureasil matrix. Applied Surface Science, 2014, 314, 877-887.	6.1	13
56	Synthesis and characterization of organic–inorganic hybrid materials prepared by sol–gel and containing CdS nanoparticles prepared by a colloidal method using poly(N-vinyl-2-pyrrolidone). Journal of Sol-Gel Science and Technology, 2014, 71, 69-78.	2.4	7
57	Kesterite Cu2ZnSnS4 solar cell from sputtered Zn/(Cu & Sn) metal stack precursors. Journal of Alloys and Compounds, 2014, 610, 486-491.	5.5	29
58	Versatile and scalable synthesis of graphene nanoribbons. Materials Letters, 2014, 119, 75-78.	2.6	5
59	Synthesis and characterization of organic–inorganic hybrid materials prepared by sol–gel and containing ZnxCd1â°'xS nanoparticles prepared by a colloidal method. Journal of Luminescence, 2013, 144, 203-211.	3.1	13
60	One-pot synthesis of CdS nanoparticles exhibiting quantum size effect prepared within a sol–gel derived ureasilicate matrix. Optical Materials, 2013, 36, 186-190.	3.6	20
61	Simple Metal-catalyst-free Production of Carbon Nanostructures. Australian Journal of Chemistry, 2013, 66, 1435.	0.9	5
62	Switchable Magnetism: Neutron Diffraction Studies of the Desolvated Coordination Polymer Co ₃ (OH) ₂ (C ₄ 0 ₄) ₂ . Inorganic Chemistry, 2013, 52, 13462-13468.	4.0	18
63	β-NaYF <inf>4</inf> :Er ³⁺ nanocrystal films as a spectral converter to improve photoconversion efficiency of crystalline silicon solar cells. , 2013, , .		0
64	Adsorption and desorption characteristics of 3-dimensional networks of fused graphene. Surface Science, 2012, 606, 34-39.	1.9	14
65	Centralâ€Atom Size Effects on the Methyl Torsions of Groupâ€XIV Tetratolyls. Chemistry - A European Journal, 2012, 18, 13018-13024.	3.3	8
66	Engineering solvothermal reactions to produce multi-walled carbon nanotubes. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	4
67	The gram-scale synthesis of carbon onions. Carbon, 2012, 50, 1109-1115.	10.3	99
68	A flexible copper based microporous metal–organic framework displaying selective adsorption of hydrogen over nitrogen. Dalton Transactions, 2011, 40, 3398.	3.3	22
69	Two Stage Magnetic Ordering and Spin Idle Behavior of the Coordination Polymer Co ₃ (OH) ₂ (C ₄ 0 ₄) ₂ ·3H ₂ O Determined Using Neutron Diffraction. Inorganic Chemistry, 2011, 50, 2246-2251.	4.0	18
70	Muons Probe Strong Hydrogen Interactions with Defective Graphene. Nano Letters, 2011, 11, 4919-4922.	9.1	58
71	Dispersion relation of low-energy excitations in Zr50Be50 metallic glass. Journal of Surface Investigation, 2011, 5, 409-411.	0.5	1
72	Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 2011, 196, 7030-7034.	7.8	362

#	Article	IF	CITATIONS
73	Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010, 12, 303-306.	4.7	402
74	Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Superconductor Science and Technology, 2010, 23, 085003.	3.5	44
75	Conducting polymer discotic hybrids for organic semiconductor applications. , 2010, , .		0
76	Controlled Synthesis of Isomorphous Coordination Polymers via in Situ Ligand Transformation Reaction: Crystal Structure, Thermal and Magnetic Properties. Crystal Growth and Design, 2010, 10, 4060-4067.	3.0	39
77	Dispersive kinetics in discotic liquid crystals. Physical Review E, 2010, 82, 051703.	2.1	2
78	Controlled Synthesis of Titanium Dioxide Nanostructures. Solid State Phenomena, 2010, 162, 261-294.	0.3	9
79	Four new coordination polymers constructed from benzene tricarboxylic acid: synthesis, crystal structure, thermal and magnetic properties. Dalton Transactions, 2010, 39, 9860.	3.3	19
80	Three isolated structural motifs in one crystal: penetration of two 1D chains through large cavities within 2D polymeric sheets. CrystEngComm, 2010, 12, 1391-1393.	2.6	14
81	A 2D cobalt based coordination polymer constructed from benzimidazole and acetate ion exhibiting spin-canted antiferromagnetism. Dalton Transactions, 2010, 39, 3372.	3.3	29
82	Superhydrophobic carbon onion coatings. , 2010, , .		0
83	The controlled engineering of photocatalyst nanostructures. , 2010, , .		0
84	Magneto-structural correlations of a three-dimensional Mn based metal–organic framework. Dalton Transactions, 2010, 39, 4358.	3.3	18
85	A three-dimensional metal-organic framework showing long-range magnetic ordering. , 2010, , .		1
86	Non-classical behaviour in an <i>S</i> = 5/2 chain with next nearest neighbour interactions observed from the inelastic neutron scattering of Mn ₂ (OD) ₂ (C ₄ O ₄). Journal of Physics Condensed Matter, 2009, 21, 076003.	1.8	2
87	The Central Atom Size Effect on the Structure of Group 14 Tetratolyls. Chemistry - A European Journal, 2009, 15, 6569-6572.	3.3	14
88	Raman and Neutron Scattering Study of Partially Deuterated <scp>L</scp> â€Alanine: Evidence of a Solidâ€Solid Phase Transition. ChemPhysChem, 2009, 10, 3337-3343.	2.1	11
89	Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 2009, 4, 30-33.	31.5	1,019
90	Muon spin relaxation study of manganese hydroxy squarate. Inorganica Chimica Acta, 2008, 361, 3718-3722.	2.4	7

#	Article	IF	CITATIONS
91	Catalyst-free solvothermal synthesis of carbon nanotubes. , 2008, , .		1
92	The purification of chemically synthesized graphene. , 2008, , .		0
93	Propagating vibrational modes in the Zr–Be metallic glasses. Journal of Physics Condensed Matter, 2008, 20, 104241.	1.8	2
94	Inelastic neutron scattering study of Pr2Co12Fe5. Journal of Physics Condensed Matter, 2008, 20, 104222.	1.8	1
95	Collective High Frequency Motions in Liquid Deuterium Fluoride. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1551-1558.	2.8	2
96	The assets of crystal monochromator-Fermi chopper time-of-flight on continuous sources - potential for high efficiency PASTIS operation. Journal of Neutron Research, 2007, 15, 95-104.	1.1	1
97	Observation of the collective vibrational modes in Ni42Nb58 metallic glass. Journal of Non-Crystalline Solids, 2007, 353, 3188-3191.	3.1	0
98	Neutron Diffraction and Theoretical DFT Studies of Two Dimensional Molecular-Based Magnet K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O. Inorganic Chemistry, 2007, 46, 1090-1099.	4.0	32
99	Muon Implantation of Metallocenes: Ferrocene. Chemistry - A European Journal, 2007, 13, 2266-2276.	3.3	15
100	Structure and Dynamics of a Discotic Liquid-Crystalline Charge-Transfer Complex. ChemPhysChem, 2007, 8, 1338-1344.	2.1	29
101	Dispersion of acoustic-like and optic-like vibrational excitations in Ni2B metallic glass. Crystallography Reports, 2007, 52, 471-473.	0.6	1
102	Inelastic neutron scattering study of magnetic excitations in the kagome antiferromagnet potassium jarosite. Journal of Physics Condensed Matter, 2006, 18, 8847-8858.	1.8	15
103	Molecular dynamics of the self-organising strong hydrogen bonded 3,5-dimethylpyrazole. New Journal of Chemistry, 2006, 30, 425.	2.8	6
104	Experimental Q-dependence of the rotational J=0-to-1 transition of molecular hydrogen adsorbed in single-wall carbon nanotube bundles. Chemical Physics, 2006, 328, 318-323.	1.9	7
105	Investigations of guest-modulated ordering temperatures in open-framework 3D porous magnets. Physica B: Condensed Matter, 2006, 385-386, 465-467.	2.7	7
106	PASTIS: An insert for polarization analysis studies on a thermal inelastic spectrometer. Physica B: Condensed Matter, 2006, 385-386, 1142-1145.	2.7	32
107	Static and dynamic properties of Mn2(OH)2(C4O4). Physica B: Condensed Matter, 2006, 385-386, 435-437.	2.7	12
108	Inelastic-neutron-scattering study of excited spin multiplets and low-energy phonons in the the second seco	3.2	13

#	Article	IF	CITATIONS
109	The thermal time-of-flight spectrometer IN4 with the forward scattering detector. Journal of Neutron Research, 2006, 14, 353-359.	1.1	1
110	Softening of the potential-energy surface in polymer electrolytes on the addition of nanoparticles. Chemical Physics, 2005, 317, 282-288.	1.9	8
111	Lattice modes of hexamethylbenzene studied by inelastic neutron scattering. Chemical Physics, 2005, 317, 143-152.	1.9	8
112	Symmetry and Topology Determine the MoV-CN-MnIIExchange Interactions in High-Spin Molecules. Angewandte Chemie - International Edition, 2005, 44, 2711-2715.	13.8	69
113	Towards polarization analysis on a thermal time-of-flight spectrometer. Physica B: Condensed Matter, 2005, 356, 146-149.	2.7	4
114	Determination of the low-temperature structure of hexamethylbenzene. Acta Crystallographica Section B: Structural Science, 2005, 61, 200-206.	1.8	19
115	The observation of magnetic excitations in a single layered and a bilayered brownmillerite. Journal of Physics Condensed Matter, 2005, 17, 99-104.	1.8	5
116	Dynamics and Lithium Binding Energies of Polyelectrolytes Based on Functionalized Poly(para-phenylene terephthalamide). Journal of Physical Chemistry B, 2005, 109, 7705-7712.	2.6	6
117	Intra- and inter-multiplet magnetic excitations in a tetrairon(III) molecular cluster. Physical Review B, 2004, 70, .	3.2	27
118	Enhancement of rare-earth–transition-metal exchange interaction in Pr2Fe17 probed by inelastic neutron scattering. Applied Physics Letters, 2004, 85, 4097-4099.	3.3	3
119	Vibrational spectra of Ti–Zr–Si metallic glasses. Physica B: Condensed Matter, 2004, 350, E1107-E1110.	2.7	2
120	Cracking a chemical conundrum. Physica B: Condensed Matter, 2004, 350, E351-E354.	2.7	8
121	Collective excitations in Ni62Nb38 glass from partial scattering functions. Physica B: Condensed Matter, 2004, 350, E1103-E1106.	2.7	3
122	Inelastic neutron scattering study of magnetic excitations in uranium phosphates. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E203-E204.	2.3	1
123	Analysis of quasielastic neutron scattering (QENS) data of discotic systems using different molecular dynamics (MD) models. Physica B: Condensed Matter, 2004, 350, E1003-E1005.	2.7	4
124	Origin of Heterogeneous Relaxation in a Random Liquid Crystal Thermoset Copolyester. Macromolecules, 2004, 37, 9855-9860.	4.8	1
125	Electronic Interaction in an Outer-Sphere Mixed-Valence Double Salt:Â A Polarized Neutron Diffraction Study of K3(MnO4)2. Inorganic Chemistry, 2004, 43, 7061-7067.	4.0	5
126	Muon studies of simple oxalate systems. Physica B: Condensed Matter, 2003, 326, 85-88.	2.7	3

#	Article	IF	CITATIONS
127	Dynamics of discotic methoxy triphenylene molecules from quasielastic neutron scattering and molecular dynamics simulations. Chemical Physics, 2003, 292, 185-190.	1.9	11
128	Spectroscopic and Structural Characterization of the [Fe(imidazole)6]2+Cation. Inorganic Chemistry, 2003, 42, 5771-5777.	4.0	37
129	Dynamics of a Triphenylene Discotic Molecule, HAT6, in the Columnar and Isotropic Liquid Phases. Journal of the American Chemical Society, 2003, 125, 3860-3866.	13.7	67
130	Intermolecular Fermi resonance. Journal of Chemical Physics, 2003, 119, 2747-2752.	3.0	16
131	Muon Spin Rotation of Carbonyl Compounds, an Exploration of the Mechanism of Hyperfine Interaction. Journal of Physical Chemistry A, 2002, 106, 244-250.	2.5	12
132	Hydrogen-bonding in the self-organising system 3,5-dimethylpyrazole. New Journal of Chemistry, 2001, 25, 1069-1072.	2.8	4
133	Letter: Comment on the intensities of inelastic neutron scattering spectra. Dalton Transactions RSC, 2001, , 2435-2436.	2.3	1
134	Determination of the nuclear structure and spin density distribution in the cyano-bridged molecular based magnet K2Mn3(H2O)6[Mo(CN)7]2·6ÂH2O. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 105-112.	0.1	4
135	Observation of Magnetic Coupling Between Distant Metal Centers in K3(MnO4)2 by Muon Spin Relaxation Measurements. ChemPhysChem, 2001, 2, 683-688.	2.1	3
136	Spin-Density Map of the Triplet Ground State of a Titanium(IV) Complex with Schiff-Base Diquinone Radical Ligands: An Investigation Using Polarized-Neutron Diffraction and Density-Functional Theory. Angewandte Chemie - International Edition, 2000, 39, 1786-1788.	13.8	20
137	Dynamics of polyurethane elastomers by muon spin relaxation. Polymer, 2000, 41, 3455-3461.	3.8	11
138	Monte-Carlo simulations for instrumentation at pulsed and continuous sources. Physica B: Condensed Matter, 2000, 276-278, 71-72.	2.7	9
139	Restricted proton mobility in the self-organising system 3,5-dimethylpyrazole. Physica B: Condensed Matter, 2000, 276-278, 308-309.	2.7	3
140	Powder diffraction on a long-pulse spallation source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451, 480-491.	1.6	5
141	Muon spin relaxation as a probe of molecular dynamics of organometallic compounds. , 1997, 106, 27-32.		18
142	Spin Frustration in High-Spin Triiron(III) Complexes: An Inelastic Neutron Scattering Study. Journal of the American Chemical Society, 1994, 116, 11869-11874.	13.7	58
143	Exchange interactions in trinuclear basic chromium(III) clusters: Direct observation of the magnetic spectrum by inelastic neutron scattering. Journal of Chemical Physics, 1993, 98, 9303-9310.	3.0	25
144	Electronic interactions in mixed-valence and mixed-metal ion clusters: inelastic neutron scattering spectra of the complexes [FeIII2MIIO(OOCMe)6(py)3](py), where M = manganese, nickel. Journal of the American Chemical Society, 1993, 115, 7778-7782.	13.7	14

#	Article	IF	CITATIONS
145	Defect Engineering for Efficient Cu ₂ ZnSnS ₄ Solar Cells via Moistureâ€Assisted Postâ€Deposition Annealing. Advanced Optical Materials, 0, , 2200607.	7.3	7