
Michael Danilenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2139273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity of Thioalkaloid-Enriched Nuphar lutea Extract and Purified 6,6′-Dihydroxythiobinupharidine in Acute Myeloid Leukemia Cells: The Role of Oxidative Stress and Intracellular Calcium. Pharmaceuticals, 2022, 15, 410.	3.8	3
2	Structure-Activity Relationship of Hydroxycinnamic Acid Derivatives for Cooperating with Carnosic Acid and Calcitriol in Acute Myeloid Leukemia Cells. Biomedicines, 2021, 9, 1517.	3.2	3
3	Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants, 2021, 10, 1591.	5.1	12
4	Differentiation agents increase the potential AraC therapy of AML by reactivating cell death pathways without enhancing ROS generation. Journal of Cellular Physiology, 2020, 235, 573-586.	4.1	8
5	Plasma 25-Hydroxyvitamin D Levels and VDR Gene Expression in Peripheral Blood Mononuclear Cells of Leukemia Patients and Healthy Subjects in Central Kazakhstan. Nutrients, 2020, 12, 1229.	4.1	5
6	Genetic condition of human papillomavirus high carcinogenic risk. Bulletin of the Karaganda University "Biology Medicine Geography Seriesâ€ , 2020, 97, 29-40.	0.0	0
7	Carnosic acid increases sorafenib-induced inhibition of ERK1/2 and STAT3 signaling which contributes to reduced cell proliferation and survival of hepatocellular carcinoma cells. Oncotarget, 2020, 11, 3129-3143.	1.8	4
8	Abstract 1811: Sorafenib-mediated apoptotic and autophagic cell death is increased by carnosic acid and a vitamin D2 analog in hepatocellular carcinoma (HCC). , 2020, , .		0
9	Synergistic Cytotoxicity of Methyl 4-Hydroxycinnamate and Carnosic Acid to Acute Myeloid Leukemia Cells via Calcium-Dependent Apoptosis Induction. Frontiers in Pharmacology, 2019, 10, 507.	3.5	9
10	Participation of vitamin D-upregulated protein 1 (TXNIP)-ASK1-JNK1 signalosome in the enhancement of AML cell death by a post-cytotoxic differentiation regimen. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 166-173.	2.5	10
11	Cardiolipin mediates curcumin interactions with mitochondrial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 75-82.	2.6	11
12	Dimethyl fumarate and vitamin D derivatives cooperatively enhance VDR and Nrf2 signaling in differentiating AML cells in vitro and inhibit leukemia progression in a xenograft mouse model. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 8-16.	2.5	24
13	Current progress in the study of acute myeloid leukemia. International Journal of Biology and Chemistry, 2019, 12, 86-92.	0.3	1
14	Effects of Vitamin D Derivatives on Differentiation, Cell Cycle, and Apoptosis in Hematological Malignancies. , 2018, , 761-799.		2
15	A composition of medicinal plants with an enhanced ability to suppress microsomal lipid peroxidation and a protective activity against carbon tetrachloride-induced hepatotoxicity. Biomedicine and Pharmacotherapy, 2017, 96, 1283-1291.	5.6	11
16	Prodifferentiation Activity of Novel Vitamin D2 Analogs PRI-1916 and PRI-1917 and Their Combinations with a Plant Polyphenol in Acute Myeloid Leukemia Cells. International Journal of Molecular Sciences, 2016, 17, 1068.	4.1	11
17	Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells. Biomedicine and Pharmacotherapy, 2016, 82, 80-89.	5.6	17
18	The plant-derived polyphenol carnosic acid arrests cancer cells growth via alteration of mitochondria metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e112.	1.0	1

#	Article	IF	CITATIONS
19	Novel analogs of 1,25-dihydroxyvitamin D2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 59-65.	2.5	21
20	Keep Harm at Bay: Oxidative Phosphorylation Induces Nrf2-Driven Antioxidant Response Via ERK5/MEF2/miR-23a Signaling to Keap-1. EBioMedicine, 2016, 3, 4-5.	6.1	9
21	Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget, 2016, 7, 31847-31861.	1.8	52
22	Vitamin D Control of Hematopoietic Cell Differentiation and Leukemia. Journal of Cellular Biochemistry, 2015, 116, 1500-1512.	2.6	23
23	Preferential anti-proliferative activity of <i>Varthemia iphionoides</i> (<i>Chiliadenus iphinoides)</i> . Israel Journal of Plant Sciences, 2015, 62, 229-233.	0.5	7
24	The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, 2015, 572, 28-35.	3.0	108
25	The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage. Experimental Cell Research, 2015, 330, 199-211.	2.6	20
26	Abstract 4655: Plant polyphenols inhibit cellular 24-hydroxylase (CYP24A1) expression and elevate serum 25-hydroxyvitamin D levels. , 2015, , .		0
27	Antitumor Activity of Ethanol Extract from Hippophae Rhamnoides L. Leaves towards Human Acute Myeloid Leukemia Cells In Vitro. Bulletin of Experimental Biology and Medicine, 2014, 158, 252-255.	0.8	18
28	ERK5 Pathway Regulates Transcription Factors Important for Monocytic Differentiation of Human Myeloid Leukemia Cells. Journal of Cellular Physiology, 2014, 229, 856-867.	4.1	25
29	ERK 5/MAPK pathway has a major role in 1α,25-(OH)2 vitamin D3-induced terminal differentiation of myeloid leukemia cells. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 223-227.	2.5	31
30	Abstract 5451: Inhibition of the MEK5/ERK5 pathway can redirect 1,25-dihydroxyvitamin D3-treated human AML cells from monocytic to granulocytic lineage of differentiation , 2013, , .		0
31	Abstract 2184: The roles of intracellular calcium and ER stress in the synergistic apoptotic effect of the plant polyphenols curcumin and carnosic acid in acute myeloid leukemia cells , 2013, , .		0
32	The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. American Journal of Clinical Nutrition, 2012, 96, 1173S-1178S.	4.7	58
33	Differentiation and Cell Survival of Myeloid Leukemia Cells. Leukemia Research and Treatment, 2012, 2012, 1-2.	2.0	1
34	Cell-Type-Specific Effects of Silibinin on Vitamin D-Induced Differentiation of Acute Myeloid Leukemia Cells Are Associated with Differential Modulation of RXRα Levels. Leukemia Research and Treatment, 2012, 2012, 1-12.	2.0	6
35	Polyphenols, isothiocyanates, and carotenoid derivatives enhance estrogenic activity in bone cells but inhibit it in breast cancer cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E815-E824.	3.5	21
36	Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Molecular Nutrition and Food Research, 2012, 56, 259-269.	3.3	140

#	Article	IF	CITATIONS
37	Abstract 1837: Cellular glutathione is an essential mediator of the enhancing effect of plant polyphenolic antioxidants on vitamin D-induced differentiation of acute myeloid leukemia cells. , 2012, , .		0
38	The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells. Cancer Biology and Therapy, 2011, 11, 317-329.	3.4	56
39	Vitamin D Effects on Differentiation and Cell Cycle. , 2011, , 1625-1656.		4
40	The Role of Tomato Lycopene in Cancer Prevention. , 2011, , 47-66.		2
41	Abstract 3529: Evaluation of PRI vitamin D analogues, alone or with enhancers, as antileukemia agents. , 2011, , .		Ο
42	Abstract 282A: The Nrf2 transcription factor is a positive regulator of differentiation of acute myeloid leukemia cells induced by vitamin D derivatives and plant polyphenols. , 2011, , .		0
43	Silibinin can induce differentiation as well as enhance vitamin D ₃ â€induced differentiation of human AML cells <i>ex vivo</i> and regulates the levels of differentiationâ€related transcription factors. Hematological Oncology, 2010, 28, 124-132.	1.7	27
44	Tumor suppressor p53 status does not determine the differentiation-associated G1cell cycle arrest induced in leukemia cells by 1,25-dihydroxyvitamin D3and antioxidants. Cancer Biology and Therapy, 2010, 10, 344-350.	3.4	19
45	DNA damage response: A barrier or a path to tumor progression?. Cancer Biology and Therapy, 2010, 9, 252-254.	3.4	3
46	Inhibition of Cot1/Tlp2 oncogene in AML cells reduces ERK5 activation and upregulates p27 ^{Kip1} concomitant with enhancement of differentiation and cell cycle arrest induced by silibinin and 1,25-dihydroxyvitamin D ₃ . Cell Cycle, 2010, 9, 4542-4551.	2.6	54
47	Distinct Combinatorial Effects of the Plant Polyphenols Curcumin, Carnosic Acid, and Silibinin on Proliferation and Apoptosis in Acute Myeloid Leukemia Cells. Nutrition and Cancer, 2010, 62, 811-824.	2.0	77
48	Abstract 3491: Differential antileukemic activity of plant polyphenol combinations in acute myeloid leukemia (AML) cells. , 2010, , .		0
49	Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radical Biology and Medicine, 2009, 47, 659-667.	2.9	141
50	Differential enhancement of leukaemia cell differentiation without elevation of intracellular calcium by plantâ€derived sesquiterpene lactone compounds. British Journal of Pharmacology, 2008, 155, 814-825.	5.4	28
51	Membrane processes and biophysical characterization of living cells decorated with chromatic polydiacetylene vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1335-1343.	2.6	9
52	Synergistic Antileukemic Activity of Carnosic Acid-Rich Rosemary Extract and the 19-nor Gemini Vitamin D Analogue in a Mouse Model of Systemic Acute Myeloid Leukemia. Oncology, 2008, 75, 203-214.	1.9	55
53	Tomato Carotenoids and the IGF System in Cancer. , 2008, , 395-410.		1
54	Programmed Cell Death-4 Tumor Suppressor Protein Contributes to Retinoic Acid–Induced Terminal Granulocytic Differentiation of Human Myeloid Leukemia Cells. Molecular Cancer Research, 2007, 5, 95-108.	3.4	84

#	Article	IF	CITATIONS
55	Differentiation-inducing potency of the seco-steroid JK-1624F2-2 can be increased by combination with an antioxidant and a p38MAPK inhibitor which upregulates the JNK pathway. Journal of Steroid Biochemistry and Molecular Biology, 2007, 105, 140-149.	2.5	15
56	Lycopene and other carotenoids inhibit estrogenic activity of 17β-estradiol and genistein in cancer cells. Breast Cancer Research and Treatment, 2007, 104, 221-230.	2.5	93
57	Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. European Journal of Nutrition, 2006, 45, 275-282.	3.9	88
58	Cooperative antitumor effects of vitamin D ₃ derivatives and rosemary preparations in a mouse model of myeloid leukemia. International Journal of Cancer, 2006, 118, 3012-3021.	5.1	71
59	Cooperation between antioxidants and 1,25â€dihydroxyvitamin D ₃ in induction of leukemia HL60 cell differentiation through the JNK/APâ€1/Egrâ€1 pathway. Journal of Cellular Physiology, 2005, 204, 964-974.	4.1	67
60	Differentiation and the Cell Cycle. , 2005, , 1635-1661.		1
61	Regulation of Transcription by Antioxidant Carotenoids. , 2005, , .		Ο
62	Carotenoids activate the antioxidant response element transcription system. Molecular Cancer Therapeutics, 2005, 4, 177-86.	4.1	216
63	Intracellular Ca2+ Regulates the Phosphorylation and the Dephosphorylation of Ciliary Proteins Via the NO Pathway. Journal of General Physiology, 2004, 124, 527-540.	1.9	44
64	Enhancement by other compounds of the anti-cancer activity of vitamin D3 and its analogs. Experimental Cell Research, 2004, 298, 339-339.	2.6	0
65	Enhancement by other compounds of the anti-cancer activity of vitamin D3 and its analogs. Experimental Cell Research, 2004, 298, 339-358.	2.6	55
66	Carotenoids and transcription. Archives of Biochemistry and Biophysics, 2004, 430, 89-96.	3.0	108
67	Anticancer Activity of Carotenoids. Oxidative Stress and Disease, 2004, , 165-196.	0.3	2
68	Modulation of transcriptional activity by antioxidant carotenoids. Molecular Aspects of Medicine, 2003, 24, 371-384.	6.4	27
69	Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Research, 2003, 63, 1325-32.	0.9	85
70	Role of gene regulation in the anticancer activity of carotenoids. Pure and Applied Chemistry, 2002, 74, 1469-1477.	1.9	33
71	Effects of acyclo-Retinoic Acid and Lycopene on Activation of the Retinoic Acid Receptor and Proliferation of Mammary Cancer Cells. Archives of Biochemistry and Biophysics, 2001, 391, 295-302.	3.0	84
72	Carnosic Acid Inhibits Proliferation and Augments Differentiation of Human Leukemic Cells Induced by 1,25-Dihydroxyvitamin Dsub3 and Retinoic Acid. Nutrition and Cancer, 2001, 41, 135-144.	2.0	84

#	Article	IF	CITATIONS
73	Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E–cdk2 complexes. Oncogene, 2001, 20, 3428-3436.	5.9	212
74	Carnosic Acid and Promotion of Monocytic Differentiation of HL60-G Cells Initiated by Other Agents. Journal of the National Cancer Institute, 2001, 93, 1224-1233.	6.3	101
75	Carnosic Acid Inhibits Proliferation and Augments Differentiation of Human Leukemic Cells Induced by 1,25-Dihydroxyvitamin Dsub3 and Retinoic Acid. Nutrition and Cancer, 2001, 41, 135-144.	2.0	21
76	Molecular mechanisms for the anticancer activity of the carotenoid lycopene. Drug Development Research, 2000, 50, 448-456.	2.9	42
77	Lycopene Interferes With Cell Cycle Progression and Insulin-Like Growth Factor I Signaling in Mammary Cancer Cells. Nutrition and Cancer, 2000, 36, 101-111.	2.0	315
78	Effect of Purified Allicin, the Major Ingredient ofFreshly Crushed Garlic, on Cancer Cell Proliferation. Nutrition and Cancer, 2000, 38, 245-254.	2.0	194
79	MECHANISMS OF ACTION OF THE ANTIOXIDANT LYCOPENE IN CANCER. , 1999, , 377-384.		Ο
80	Lycopene and 1,25â€dihydroxyvitamin d ₃ cooperate in the inhibition of cell cycle progression and induction of differentiation in hlâ€60 leukemic cells. Nutrition and Cancer, 1999, 33, 105-112.	2.0	205
81	Membrane-associated Insulin-like Growth Factor-binding Protein-3 Inhibits Insulin-like Growth Factor-l-induced Insulin-like Growth Factor-I Receptor Signaling in Ishikawa Endometrial Cancer Cells. Journal of Biological Chemistry, 1997, 272, 16514-16520.	3.4	57
82	Na+-K+-ATPase in frog esophagus mucociliary cell membranes: inhibition by protein kinase C activation. American Journal of Physiology - Cell Physiology, 1997, 273, C1842-C1848.	4.6	4
83	The Tomato Carotenoid Lycopene and Cancer. , 1997, , 209-212.		1
84	Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins Endocrinology, 1996, 137, 1089-1095.	2.8	50
85	LYCOPENE, THE MAJOR TOMATO CAROTENOID, DELAYS CELL CYCLE PROGRESSION IN CANCER CELLS. Biochemical Society Transactions, 1996, 24, 515S-515S.	3.4	Ο
86	Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology, 1996, 137, 1089-1095.	2.8	25
87	The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues. Biochemical Journal, 1995, 310, 715-719.	3.7	14
88	Lycopene is a more potent inhibitor of human cancer cell proliferation than either αâ€carotene or βâ€carotene. Nutrition and Cancer, 1995, 24, 257-266.	2.0	496
89	Components of the IGF system mediate the opposing effects of tamoxifen on endometrial and breast cancer cell growth. Progress in Growth Factor Research, 1995, 6, 513-520.	1.6	15
90	Selective Effects of Mastoparan Analogs: Separation of G-Protein-Directed and Membrane-Perturbing Activities. Biochemical and Biophysical Research Communications, 1993, 196, 1296-1302.	2.1	33

#	Article	IF	CITATIONS
91	Influence of digoxin on the Na,K-ATPase activity, transmembrane potential, and contractile activity of ischemically damaged rat heart. Pharmaceutical Chemistry Journal, 1992, 26, 475-479.	0.8	0
92	Characteristics of sarcolemmal ATPase activity of longitudinal and circular musculature of the canine ileum. Bulletin of Experimental Biology and Medicine, 1990, 110, 1302-1305.	0.8	0
93	Cellular mechanism of the dependence of cardiotonic action of digoxin on the degree of ischemic damage to the myocardium. Pharmaceutical Chemistry Journal, 1989, 23, 451-454.	0.8	0
94	Changes in activity and regulatory properties of Na,K-ATP-ase from the myocardial sarcolemma during total graded ischemia. Bulletin of Experimental Biology and Medicine, 1987, 104, 901-904.	0.8	0
95	Cholinergic regulation of Na, K-ATPase activity from pig kidney. Bulletin of Experimental Biology and Medicine, 1984, 98, 1490-1492.	0.8	0
96	Muscarinic cholinoceptor-mediated inhibition of sarcolemmal Na,K-ATPase activity of myocardium and intestinal smooth muscles by acetylcholine. Bulletin of Experimental Biology and Medicine, 1984, 98, 1153-1155.	0.8	0
97	Novel pyrrolidine-aminophenyl-1,4-naphthoquinones: structure-related mechanisms of leukemia cell death. Molecular and Cellular Biochemistry, 0, , .	3.1	Ο