D Wade Clapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2138526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SIK2 kinase synthetic lethality is driven by spindle assembly defects in <i>FANCA</i> â€deficient cells. Molecular Oncology, 2022, 16, 860-884.	4.6	2
2	Irradiation of Nf1 mutant mouse models of spinal plexiform neurofibromas drives pathologic progression and decreases survival. Neuro-Oncology Advances, 2021, 3, vdab063.	0.7	4
3	Cabozantinib for neurofibromatosis type 1–related plexiform neurofibromas: a phase 2 trial. Nature Medicine, 2021, 27, 165-173.	30.7	46
4	Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours. British Journal of Cancer, 2021, 124, 1566-1580.	6.4	12
5	PAK1 inhibition reduces tumor size and extends the lifespan of mice in a genetically engineered mouse model of Neurofibromatosis Type 2 (NF2). Human Molecular Genetics, 2021, 30, 1607-1617.	2.9	12
6	Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS ONE, 2021, 16, e0252048.	2.5	19
7	Mitotic Errors Promote Genomic Instability and Leukemia in a Novel Mouse Model of Fanconi Anemia. Frontiers in Oncology, 2021, 11, 752933.	2.8	4
8	<i>Nf1</i> -Mutant Tumors Undergo Transcriptome and Kinome Remodeling after Inhibition of either mTOR or MEK. Molecular Cancer Therapeutics, 2020, 19, 2382-2395.	4.1	3
9	Genetic disruption of the small GTPase RAC1 prevents plexiform neurofibroma formation in mice with neurofibromatosis type 17. Journal of Biological Chemistry, 2020, 295, 9948-9958.	3.4	7
10	Early administration of imatinib mesylate reduces plexiform neurofibroma tumor burden with durable results after drug discontinuation in a mouse model of neurofibromatosis type 1. Pediatric Blood and Cancer, 2020, 67, e28372.	1.5	3
11	Addressing Gaps in Pediatric Scientist Development: The Department Chair View of 2 AMSPDC-Sponsored Programs. Journal of Pediatrics, 2020, 222, 7-12.e4.	1.8	6
12	Selumetinib in Children with Inoperable Plexiform Neurofibromas. New England Journal of Medicine, 2020, 382, 1430-1442.	27.0	360
13	A molecular basis for neurofibroma-associated skeletal manifestations in NF1. Genetics in Medicine, 2020, 22, 1786-1793.	2.4	12
14	Schwannoma development is mediated by Hippo pathway dysregulation and modified by RAS/MAPK signaling. JCI Insight, 2020, 5, .	5.0	14
15	Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Therapy, 2019, 26, 277-286.	4.5	21
16	Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation. Human Molecular Genetics, 2019, 28, 2752-2762.	2.9	54
17	A proteasome-resistant fragment of NIK mediates oncogenic NF-κB signaling in schwannomas. Human Molecular Genetics, 2019, 28, 572-583.	2.9	5
18	Hospitalist Medicine—Chairs' Perspective of Specialty Status and Training Requirements. Journal of Pediatrics, 2018, 193, 4-8.e1.	1.8	3

D WADE CLAPP

#	Article	IF	CITATIONS
19	Fanconi anaemia and cancer: an intricate relationship. Nature Reviews Cancer, 2018, 18, 168-185.	28.4	275
20	From bedside to bench and back: Translating ASD models. Progress in Brain Research, 2018, 241, 113-158.	1.4	2
21	NFM-09. PRELIMINARY REPORT OF A MULTICENTER, PHASE 2 STUDY OF BEVACIZUMAB IN CHILDREN AND ADULTS WITH NEUROFIBROMATOSIS 2 AND PROGRESSIVE VESTIBULAR SCHWANNOMAS: AN NF CLINICAL TRIALS CONSORTIUM STUDY. Neuro-Oncology, 2018, 20, i144-i144.	1.2	0
22	Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2. PLoS ONE, 2018, 13, e0197350.	2.5	17
23	Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. Journal of Clinical Investigation, 2018, 128, 2848-2861.	8.2	101
24	Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2. Oncotarget, 2018, 9, 718-725.	1.8	6
25	A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Research, 2017, 77, 5706-5711.	0.9	22
26	Preclinical Evidence for the Use of Sunitinib Malate in the Treatment of Plexiform Neurofibromas. Pediatric Blood and Cancer, 2016, 63, 206-213.	1.5	20
27	Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell, 2016, 165, 867-881.	28.9	205
28	The importance of nerve microenvironment for schwannoma development. Acta Neuropathologica, 2016, 132, 289-307.	7.7	62
29	<i>Nf1</i> ^{+/â^²} monocytes/macrophages induce neointima formation via CCR2 activation. Human Molecular Genetics, 2016, 25, 1129-1139.	2.9	13
30	Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor <i>Nf1</i> gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget, 2016, 7, 7403-7414.	1.8	30
31	A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Human Molecular Genetics, 2015, 24, 1-8.	2.9	76
32	Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nature Neuroscience, 2014, 17, 1583-1590.	14.8	106
33	Fanconi anemia and the cell cycle: new perspectives on aneuploidy. F1000prime Reports, 2014, 6, 23.	5.9	23
34	FANCA Controls Mitotic Phosphosignaling Networks To Ensure Genome Stability During Cell Division. Blood, 2013, 122, 801-801.	1.4	0
35	Generation Of FANCA-/- Human CD34+ Hematopoietic Stem Cells By shRNA Knockdown. Blood, 2013, 122, 2903-2903.	1.4	2
36	Normal Hematopoiesis and Neurofibromin-Deficient Myeloproliferative Disease Require Erk. Blood, 2012, 120, 704-704.	1.4	0

D WADE CLAPP

#	Article	IF	CITATION
37	PAK1 Regulates Eotaxin-Mediated Murine Eosinophil Migration in Vitro and In Vivo. Blood, 2011, 118, 18-18.	1.4	1
38	Ezrin Regulates Hematopoietic Stem/Progenitor Cell Motility. Blood, 2011, 118, 1282-1282.	1.4	0
39	A Modified Foamy Viral Envelope Enhances Gene Transfer Efficiency and Reduces Toxicity of Lentiviral FANCA Vectors in Fanca-/- HSCs Blood, 2009, 114, 696-696.	1.4	2
40	Mast Cells and Tumor Progression Blood, 2009, 114, SCI-33-SCI-33.	1.4	0
41	Kinase Suppressor of Ras Plays a Critical Role in Modulating Inflammatory Mast Cell Functions Blood, 2007, 110, 2407-2407.	1.4	0
42	Loss of Pak1 Corrects Multiple Gain of Function Phenotypes in Nf1+/â^' Mast Cells Blood, 2007, 110, 236-236.	1.4	1
43	Developmental Regulation of the Immune System. Seminars in Perinatology, 2006, 30, 69-72.	2.5	88
44	Suprasynergistic Peripheral Blood Stem Cell Mobilization in Normal and Fanconi Anemia Knockout Mice by the Combination of G-CSF Plus the CXCR4 Antagonist AMD3100 and the CXCR2 Agonist GRO β. Blood, 2006, 108, 3185-3185.	1.4	2
45	Comparative Functional Genomic Analysis of Myelodysplasia (MDS) in Fanconi Anemia (FA) Blood, 2006, 108, 2636-2636.	1.4	0
46	Foamy Viral Vectors Efficiently Transduce Quiescent Hematopoietic Stem/Progenitor Cells (HSC) and Restore the Long Term Repopulating Activity of Fancc â^'/â^' Stem Cells Blood, 2005, 106, 182-182.	1.4	1
47	Murine and Human NF1 Haploinsufficient Mast Cells Promote Alterations in Fibroblast Function and Organization of the Extracellular Matrix in Three-Dimensional Collagen Lattices and this Gain in Function Is Abrogated by the Addition of STI-571 Blood, 2004, 104, 1465-1465.	1.4	3
48	Functional Analysis of Leukemia-Associated PTPN11 Mutations in Primary Hematopoietic Cells Blood, 2004, 104, 2423-2423.	1.4	0
49	Loss of FancC Function Results in Decreased Hematopoietic Stem Cell Repopulating Ability. Blood, 1999, 94, 1-8.	1.4	185
50	Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 1996, 12, 144-148.	21.4	555
51	The Highest Concentration of Primitive Hematopoietic Progenitor Cells in Cord Blood Is Found in Extremely Premature Infants. Pediatric Research, 1996, 39, 820-825.	2.3	49