Mani Prabaharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213639/publications.pdf

Version: 2024-02-01

62 papers 8,395 citations

38 h-index 54 g-index

64 all docs

64 docs citations

64 times ranked 11153 citing authors

#	Article	IF	Citations
1	Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011, 29, 322-337.	11.7	1,572
2	Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010, 28, 142-150.	11.7	868
3	Graft copolymerized chitosanâ€"present status and applications. Carbohydrate Polymers, 2005, 62, 142-158.	10.2	550
4	Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010, 55, 675-709.	32.8	454
5	Chitosan-Based Particles as Controlled Drug Delivery Systems. Drug Delivery, 2004, 12, 41-57.	5.7	431
6	Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials, 2009, 30, 5757-5766.	11.4	354
7	Review Paper: Chitosan Derivatives as Promising Materials for Controlled Drug Delivery. Journal of Biomaterials Applications, 2008, 23, 5-36.	2.4	332
8	Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials. Macromolecular Bioscience, 2006, 6, 991-1008.	4.1	319
9	Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(I-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials, 2009, 30, 3009-3019.	11.4	314
10	Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials, 2009, 30, 6065-6075.	11.4	299
11	Chitosan-based nanoparticles for tumor-targeted drug delivery. International Journal of Biological Macromolecules, 2015, 72, 1313-1322.	7.5	219
12	Prospective of guar gum and its derivatives as controlled drug delivery systems. International Journal of Biological Macromolecules, 2011, 49, 117-124.	7.5	199
13	Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices. Carbohydrate Polymers, 2006, 63, 153-166.	10.2	177
14	Stimuliâ€Responsive Chitosanâ€∢i>graftà€Poly(<i>N</i> â€vinylcaprolactam) as a Promising Material for Controlled Hydrophobic Drug Delivery. Macromolecular Bioscience, 2008, 8, 843-851.	4.1	129
15	Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydrate Polymers, 2008, 73, 117-125.	10.2	129
16	Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydrate Polymers, 2017, 158, 51-57.	10.2	123
17	Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 427-434.	3.4	114
18	Chitosan-graft-Î ² -cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 44, 320-325.	7.5	113

#	Article	IF	CITATIONS
19	Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. International Journal of Biological Macromolecules, 2020, 157, 135-145.	7.5	113
20	Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1382-1389.	7. 5	99
21	Carboxymethyl chitosan-graft-phosphatidylethanolamine: Amphiphilic matrices for controlled drug delivery. Reactive and Functional Polymers, 2007, 67, 43-52.	4.1	98
22	Hydroxypropyl Chitosan Bearing \hat{I}^2 -Cyclodextrin Cavities: Synthesis and Slow Release of its Inclusion Complex with a Model Hydrophobic Drug. Macromolecular Bioscience, 2005, 5, 965-973.	4.1	94
23	Amphiphilic Multiâ€Arm Block Copolymer Based on Hyperbranched Polyester, Poly(<scp>L</scp> â€lactide) and Poly(ethylene glycol) as a Drug Delivery Carrier. Macromolecular Bioscience, 2009, 9, 515-524.	4.1	88
24	Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. International Journal of Biological Macromolecules, 2016, 91, 45-50.	7.5	88
25	Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. International Journal of Biological Macromolecules, 2009, 44, 346-352.	7. 5	87
26	Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme and Microbial Technology, 2005, 36, 917-922.	3.2	81
27	Thermosensitive Micelles Based on Folateâ€Conjugated Poly(<i>N</i> â€vinylcaprolactam) <i>â€blockâ€</i> Poly(ethylene glycol) for Tumorâ€Targeted Drug Delivery. Macromolecular Bioscience, 2009, 9, 744-753.	4.1	81
28	Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. International Journal of Biological Macromolecules, 2020, 146, 222-231.	7.5	68
29	Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy. Colloids and Surfaces B: Biointerfaces, 2019, 174, 252-259.	5.0	67
30	Synthesis and Characterization of NanoscaleHydroxyapatite-Copper for Antimicrobial Activity Towards Bone Tissue Engineering Applications. Journal of Biomedical Nanotechnology, 2010, 6, 333-339.	1.1	65
31	Nanofibrous polyaniline thin film prepared by plasmaâ€induced polymerization technique for detection of NO ₂ gas. Polymers for Advanced Technologies, 2010, 21, 615-620.	3.2	64
32	Guar gum succinate as a carrier for colon-specific drug delivery. International Journal of Biological Macromolecules, 2016, 84, 10-15.	7.5	54
33	An Amphiphilic Nanocarrier Based on Guar Gum-graft-Poly(Îμ-caprolactone) for Potential Drug-Delivery Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 937-949.	3.5	50
34	Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide. International Journal of Biological Macromolecules, 2018, 110, 522-530.	7.5	45
35	Metal-containing polyurethanes, poly(urethane–urea)s and poly(urethane–ether)s: A review. Reactive and Functional Polymers, 2006, 66, 299-314.	4.1	44
36	Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery. Advances in Polymer Science, 2011, , 241-262.	0.8	41

3

#	Article	IF	Citations
37	Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging- Guided Photothermal and Photodynamic Therapy of Cancer. Current Topics in Medicinal Chemistry, 2017, 17, 1858-1871.	2.1	41
38	Study on ozone bleaching of cotton fabric - process optimisation, dyeing and finishing properties. Coloration Technology, 2001, 117, 98-103.	1.5	40
39	Deacetylation modification techniques of chitin and chitosan. , 2017, , 117-133.		35
40	Novel chitosan/gold-MPA nanocomposite for sequence-specific oligonucleotide detection. Carbohydrate Polymers, 2010, 82, 189-194.	10.2	31
41	Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 170, 529-537.	5.0	26
42	Multi-functional FITC-silica@gold nanoparticles conjugated with guar gum succinate, folic acid and doxorubicin for CT/fluorescence dual imaging and combined chemo/PTT of cancer. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110701.	5.0	22
43	Vacuum-Deposited Thin Film of Aniline–Formaldehyde Condensate/WO3·nH2O Nanocomposite for NO2 Gas Sensor. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 380-386.	3.7	19
44	Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions. Materials Science Forum, 2006, 514-516, 1010-1014.	0.3	17
45	Biomedical Applications of Polymer/Silver Composite Nanofibers. Advances in Polymer Science, 2011, , 263-282.	0.8	16
46	Developments in Metalâ€Containing Polyurethanes, Coâ€polyurethanes and Polyurethane Ionomers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 231-261.	2.2	15
47	Process Optimization in Peracetic Acid Bleaching of Cotton. Textile Reseach Journal, 2000, 70, 657-661.	2.2	14
48	Prospects of Bioactive Chitosan-Based Scaffolds in Tissue Engineering and Regenerative Medicine. Springer Series on Polymer and Composite Materials, 2016, , 41-59.	0.7	14
49	Novel Chitin and Chitosan Materials in Wound Dressing. , 2011, , .		11
50	Chitosan/carbon-based nanomaterials as scaffolds for tissue engineering. , 2017, , 381-397.		11
51	Preparation and characterization of chitosan/carboxymethyl pullulan/bioglass composite films for wound healing. Journal of Biomaterials Applications, 2022, 36, 1151-1163.	2.4	11
52	Synthesis and Characterization of Chitosanâ€graftâ€Poly(3â€(trimethoxysilyl)propyl methacrylate) Initiated by Ceric (IV) Ion. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 489-494.	2.2	10
53	Graphene oxide-reinforced pectin/chitosan polyelectrolyte complex scaffolds. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2246-2266.	3.5	9
54	Polymeric Bionanocomposites as Promising Materials for Controlled Drug Delivery. Advances in Polymer Science, 2011, , 1-18.	0.8	5

#	Article	IF	CITATIONS
55	Peptides to Target Tumor Vasculature and Lymphatics for Improved Anti-Angiogenesis Therapy. Current Cancer Drug Targets, 2016, 16, 522-535.	1.6	5
56	Theranostic Application of Fe3O4–Au Hybrid Nanoparticles. , 2019, , 607-623.		4
57	Chemical Modifications of Chitosan Intended for Biomedical Applications. , 2010, , 173-184.		3
58	Bioactivity of Chitosan Derivative. , 2014, , 1-14.		3
59	Prospects of Biosensors Based on Chitosan Matrices. Journal of Chitin and Chitosan Science, 2013, 1, 2-12.	0.3	3
60	Porous wound dressings based on chitosan/carboxymethyl guar gum/TiO2 nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	3
61	Bioactivity of Chitosan Derivatives. , 2015, , 1609-1625.		1
62	Characterization of tissue scaffolds drug release profiles. , 2016, , 149-168.		1