List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213628/publications.pdf Version: 2024-02-01

		30070	23533
124	12,825	54	111
papers	citations	h-index	g-index
125	125	125	11069
all docs	docs citations	times ranked	citing authors

LIFLI CHEN

#	Article	IF	CITATIONS
1	Mechanisms of Plasticity Remodeling and Recovery. , 2022, , 129-137.e7.		1
2	SUMO1 Deficiency Exacerbates Neurological and Cardiac Dysfunction after Intracerebral Hemorrhage in Aged Mice. Translational Stroke Research, 2021, 12, 631-642.	4.2	7
3	CD133+Exosome Treatment Improves Cardiac Function after Stroke in Type 2 Diabetic Mice. Translational Stroke Research, 2021, 12, 112-124.	4.2	27
4	Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. , 2021, 12, 732.		19
5	Multifaceted roles of pericytes-interorgan interactions. Neural Regeneration Research, 2021, 16, 982.	3.0	1
6	Inflammatory responses mediate brain–heart interaction after ischemic stroke in adult mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1213-1229.	4.3	35
7	Immune response mediates the cardiac damage after subarachnoid hemorrhage. Experimental Neurology, 2020, 323, 113093.	4.1	15
8	Brain–kidney interaction: Renal dysfunction following ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 246-262.	4.3	43
9	Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Experimental Neurology, 2020, 334, 113456.	4.1	49
10	HUCBC Treatment Improves Cognitive Outcome in Rats With Vascular Dementia. Frontiers in Aging Neuroscience, 2020, 12, 258.	3.4	10
11	Emerging role of microRNAs in ischemic stroke with comorbidities. Experimental Neurology, 2020, 331, 113382.	4.1	44
12	Multifaceted roles of pericytes in central nervous system homeostasis and disease. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1381-1401.	4.3	52
13	ABCA1/ApoE/HDL Signaling Pathway Facilitates Myelination and Oligodendrogenesis after Stroke. International Journal of Molecular Sciences, 2020, 21, 4369.	4.1	26
14	Spleen associated immune-response mediates brain-heart interaction after intracerebral hemorrhage. Experimental Neurology, 2020, 327, 113209.	4.1	18
15	Immune Response Mediates Cardiac Dysfunction after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 619-629.	3.4	41
16	MiR-126 Mediates Brain Endothelial Cell Exosome Treatment–Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke, 2019, 50, 2865-2874.	2.0	110
17	ApoA-I Mimetic Peptide Reduces Vascular and White Matter Damage After Stroke in Type-2 Diabetic Mice. Frontiers in Neuroscience, 2019, 13, 1127.	2.8	6
18	Role of Regulatory T cells in Atorvastatin Induced Absorption of Chronic Subdural Hematoma in Rats. , 2019, 10, 992.		27

#	Article	IF	CITATIONS
19	RPOO1 hydrochloride improves neurological outcome after subarachnoid hemorrhage. Journal of the Neurological Sciences, 2019, 399, 6-14.	0.6	8
20	Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Frontiers in Immunology, 2019, 10, 2747.	4.8	17
21	Role of microRNA-126 in vascular cognitive impairment in mice. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2497-2511.	4.3	49
22	Sildenafil treatment of vascular dementia in aged rats. Neurochemistry International, 2019, 127, 103-112.	3.8	26
23	Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice. , 2019, 10, 770.		18
24	Cell-Based and Exosome Therapy in Diabetic Stroke. Stem Cells Translational Medicine, 2018, 7, 451-455.	3.3	42
25	Exosome Therapy for Stroke. Stroke, 2018, 49, 1083-1090.	2.0	116
26	Vinpocetine Inhibits NF-κB-Dependent Inflammation in Acute Ischemic Stroke Patients. Translational Stroke Research, 2018, 9, 174-184.	4.2	64
27	Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology, 2018, 134, 310-322.	4.1	83
28	Mesenchymal Stromal Cell Therapy of Stroke. Springer Series in Translational Stroke Research, 2018, , 217-237.	0.1	3
29	Intracerebral Hemorrhage Induces Cardiac Dysfunction in Mice Without Primary Cardiac Disease. Frontiers in Neurology, 2018, 9, 965.	2.4	15
30	Administration of Downstream ApoE Attenuates the Adverse Effect of Brain ABCA1 Deficiency on Stroke. International Journal of Molecular Sciences, 2018, 19, 3368.	4.1	12
31	Ischemia/Reperfusion Damage in Diabetic Stroke. Springer Series in Translational Stroke Research, 2018, , 171-192.	0.1	Ο
32	APX3330 Promotes Neurorestorative Effects after Stroke in Type One Diabetic Rats. , 2018, 9, 453.		13
33	Angiopoietin-1 Mimetic Peptide Promotes Neuroprotection after Stroke in Type 1 Diabetic Rats. Cell Transplantation, 2018, 27, 1744-1752.	2.5	29
34	Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2165-2178.	4.3	51
35	White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 241-251.	4.3	17
36	MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. Translational Stroke Research, 2017, 8, 374-385.	4.2	121

#	Article	IF	CITATIONS
37	Blood–Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke. Journal of the American Heart Association, 2017, 6, .	3.7	100
38	ABCA1/ApoE/HDL Pathway Mediates GW3965-Induced Neurorestoration After Stroke. Stroke, 2017, 48, 459-467.	2.0	26
39	White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies. Neurobiology of Aging, 2017, 50, 96-106.	3.1	93
40	Brain–Heart Interaction. Circulation Research, 2017, 121, 451-468.	4.5	331
41	9-cis retinoic acid induces neurorepair in stroke brain. Scientific Reports, 2017, 7, 4512.	3.3	14
42	Relationship of Circulating CXCR4+ EPC with Prognosis of Mild Traumatic Brain Injury Patients. , 2017, 8, 115.		10
43	D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget, 2017, 8, 95481-95494.	1.8	21
44	Abstract WMP46: Exosomes Derived From Bone Marrow Mesenchymal Stem Cells of Type Two Diabetes Rats Promotes Neurorestoration After Stroke in Type Two Diabetic Rats. Stroke, 2017, 48, .	2.0	4
45	Redox Imbalance and Stroke. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	13
46	New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croatian Medical Journal, 2016, 57, 223-228.	0.7	95
47	The role of vascular endothelial growth factor and vascular endothelial growth inhibitor in clinical outcome of traumatic brain injury. Clinical Neurology and Neurosurgery, 2016, 144, 7-13.	1.4	27
48	miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats. Stem Cells Translational Medicine, 2016, 5, 1656-1667.	3.3	55
49	Progesterone modulates endothelial progenitor cell (<scp>EPC</scp>) viability through the <scp>CXCL</scp> 12/ <scp>CXCR</scp> 4/ <scp>PI</scp> 3K/Akt signalling pathway. Cell Proliferation, 2016, 49, 48-57.	5.3	32
50	MiR-126 Contributes to Human Umbilical Cord Blood Cell-Induced Neurorestorative Effects After Stroke in Type-2 Diabetic Mice. Stem Cells, 2016, 34, 102-113.	3.2	58
51	Neurorestorative Responses to Delayed Human Mesenchymal Stromal Cells Treatment of Stroke in Type 2 Diabetic Rats. Stroke, 2016, 47, 2850-2858.	2.0	38
52	Atorvastatin enhances angiogenesis to reduce subdural hematoma in a rat model. Journal of the Neurological Sciences, 2016, 362, 91-99.	0.6	50
53	D-4F Decreases White Matter Damage After Stroke in Mice. Stroke, 2016, 47, 214-220.	2.0	27
54	Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI. PLoS ONE, 2016, 11, e0149147.	2.5	11

#	Article	IF	CITATIONS
55	Models and mechanisms of vascular dementia. Experimental Neurology, 2015, 272, 97-108.	4.1	225
56	Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neuroscience Bulletin, 2015, 31, 717-734.	2.9	47
57	Persistent Cerebrovascular Damage After Stroke in Type Two Diabetic Rats Measured by Magnetic Resonance Imaging. Stroke, 2015, 46, 507-512.	2.0	35
58	Deficiency of Brain ATP-Binding Cassette Transporter A-1 Exacerbates Blood–Brain Barrier and White Matter Damage After Stroke. Stroke, 2015, 46, 827-834.	2.0	50
59	Neurorestorative Therapy of Stroke in Type 2 Diabetes Mellitus Rats Treated With Human Umbilical Cord Blood Cells. Stroke, 2015, 46, 2599-2606.	2.0	59
60	Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2704-2709.	7.1	216
61	<scp>HUCBC</scp> s Increase Angiopoietin 1 and Induce Neurorestorative Effects after Stroke in T1 <scp>DM</scp> Rats. CNS Neuroscience and Therapeutics, 2014, 20, 935-944.	3.9	44
62	Effects of atorvastatin on the inflammation regulation and elimination of subdural hematoma in rats. Journal of the Neurological Sciences, 2014, 341, 88-96.	0.6	76
63	Effects of atorvastatin on chronic subdural hematoma: A preliminary report from three medical centers. Journal of the Neurological Sciences, 2014, 336, 237-242.	0.6	107
64	Cell based therapies for ischemic stroke: From basic science to bedside. Progress in Neurobiology, 2014, 115, 92-115.	5.7	171
65	Neurorestorative Therapy for Stroke. Frontiers in Human Neuroscience, 2014, 8, 382.	2.0	143
66	Human Placenta-Derived Adherent Cell Treatment of Experimental Stroke Promotes Functional Recovery after Stroke in Young Adult and Older Rats. PLoS ONE, 2014, 9, e86621.	2.5	34
67	Efficacy of Single and Multiple Injections of Human Umbilical Tissue-Derived Cells following Experimental Stroke in Rats. PLoS ONE, 2013, 8, e54083.	2.5	23
68	The Neurorestorative Benefit of GW3965 Treatment of Stroke in Mice. Stroke, 2013, 44, 153-161.	2.0	49
69	Combination BMSC and Niaspan Treatment of Stroke Enhances White Matter Remodeling and Synaptic Protein Expression in Diabetic Rats. International Journal of Molecular Sciences, 2013, 14, 22221-22232.	4.1	19
70	Neuroprotective Effect of Human Placenta-Derived Cell Treatment of Stroke in Rats. Cell Transplantation, 2013, 22, 871-879.	2.5	67
71	Endothelial Nitric Oxide Synthase Regulates White Matter Changes via the BDNF/TrkB Pathway after Stroke in Mice. PLoS ONE, 2013, 8, e80358.	2.5	31
72	Niaspan Attenuates the Adverse Effects of Bone Marrow Stromal Cell Treatment of Stroke in Type One Diabetic Rats. PLoS ONE, 2013, 8, e81199.	2.5	24

#	Article	lF	CITATIONS
73	Intracranial Aneurysm Formation in Type-One Diabetes Rats. PLoS ONE, 2013, 8, e67949.	2.5	12
74	Abstract WMP38: Neurorestorative Therapy of Stroke in Type One Diabetes Rats with Human Umbilical Cord Blood Cell. Stroke, 2013, 44, .	2.0	0
75	Therapeutic Benefit of Treatment of Stroke with Simvastatin and Human Umbilical Cord Blood Cells: Neurogenesis, Synaptic Plasticity, and Axon Growth. Cell Transplantation, 2012, 21, 845-856.	2.5	44
76	Effects of atorvastatin in the regulation of circulating EPCs and angiogenesis in traumatic brain injury in rats. Journal of the Neurological Sciences, 2012, 319, 117-123.	0.6	58
77	Angiogenesis and Arteriogenesis as Stroke Targets. , 2012, , 231-249.		3
78	Niaspan increases axonal remodeling after stroke in type 1 diabetes rats. Neurobiology of Disease, 2012, 46, 157-164.	4.4	44
79	Abstract 3053: Combination Niaspan With Bone Marrow Stromal Cell Treatment Of Stroke In Diabetic Rats. Stroke, 2012, 43, .	2.0	0
80	Combination treatment with low-dose Niaspan and tissue plasminogen activator provides neuroprotection after embolic stroke in rats. Journal of the Neurological Sciences, 2011, 309, 96-101.	0.6	10
81	Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. Experimental Neurology, 2011, 232, 299-308.	4.1	56
82	Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke. Neurobiology of Disease, 2011, 43, 285-292.	4.4	66
83	Effects of nerve growth factor and Nogginâ€modified bone marrow stromal cells on stroke in rats. Journal of Neuroscience Research, 2011, 89, 222-230.	2.9	62
84	Transfection of Noggin in bone marrow stromal cells (BMSCs) enhances BMSCâ€induced functional outcome after stroke in rats. Journal of Neuroscience Research, 2011, 89, 1194-1202.	2.9	20
85	Adverse Effects of Bone Marrow Stromal Cell Treatment of Stroke in Diabetic Rats. Stroke, 2011, 42, 3551-3558.	2.0	109
86	White Matter Damage and the Effect of Matrix Metalloproteinases in Type 2 Diabetic Mice After Stroke. Stroke, 2011, 42, 445-452.	2.0	103
87	Niaspan treatment induces neuroprotection after stroke. Neurobiology of Disease, 2010, 40, 277-283.	4.4	51
88	Treatment of Stroke with a Synthetic Liver X Receptor Agonist, TO901317, Promotes Synaptic Plasticity and Axonal Regeneration in Mice. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 102-109.	4.3	48
89	Comparison of Bone Marrow Stromal Cells Derived From Stroke and Normal Rats for Stroke Treatment. Stroke, 2010, 41, 524-530.	2.0	63
90	Niacin Treatment of Stroke Increases Synaptic Plasticity and Axon Growth in Rats. Stroke, 2010, 41, 2044-2049.	2.0	61

#	Article	IF	CITATIONS
91	Combination treatment of experimental stroke with Niaspan and Simvastatin, reduces axonal damage and improves functional outcome. Journal of the Neurological Sciences, 2010, 294, 107-111.	0.6	25
92	Simvastatin Increases Notch Signaling Activity and Promotes Arteriogenesis After Stroke. Stroke, 2009, 40, 254-260.	2.0	61
93	eNOS Mediates TO90317 Treatment-Induced Angiogenesis and Functional Outcome After Stroke in Mice. Stroke, 2009, 40, 2532-2538.	2.0	40
94	Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. American Journal of Physiology - Cell Physiology, 2009, 296, C535-C543.	4.6	64
95	Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiology of Disease, 2009, 36, 35-41.	4.4	76
96	Increasing Ang1/Tie2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. Journal of Cellular and Molecular Medicine, 2009, 13, 1348-1357.	3.6	57
97	Nitric oxide donor upâ€regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. Journal of Neuroscience Research, 2009, 87, 86-95.	2.9	48
98	Niaspan Treatment Increases Tumor Necrosis Factor-α-Converting Enzyme and Promotes Arteriogenesis after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 911-920.	4.3	33
99	Atorvastatin Promotes Presenilin-1 Expression and Notch1 Activity and Increases Neural Progenitor Cell Proliferation After Stroke. Stroke, 2008, 39, 220-226.	2.0	60
100	Statins Increase Neurogenesis in the Dentate Gyrus, Reduce Delayed Neuronal Death in the Hippocampal CA3 Region, and Improve Spatial Learning in Rat after Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 1132-1146.	3.4	237
101	One-Year Follow-Up After Bone Marrow Stromal Cell Treatment in Middle-Aged Female Rats With Stroke, 2007, 38, 2150-2156.	2.0	198
102	Nitric Oxide Donor Upregulation of Stromal Cell-Derived Factor-1/Chemokine (CXC Motif) Receptor 4 Enhances Bone Marrow Stromal Cell Migration into Ischemic Brain After Stroke. Stem Cells, 2007, 25, 2777-2785.	3.2	87
103	Niaspan increases angiogenesis and improves functional recovery after stroke. Annals of Neurology, 2007, 62, 49-58.	5.3	101
104	Therapeutic Benefit of Bone Marrow Stromal Cells Administered 1 Month after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 6-13.	4.3	326
105	Stroke-Induced Subventricular Zone Proliferation is Promoted by Tumor Necrosis Factor-α-Converting Enzyme Protease Activity. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 669-678.	4.3	47
106	Angiopoietin1/TIE2 and VEGF/FLK1 Induced by MSC Treatment Amplifies Angiogenesis and Vascular Stabilization after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1684-1691.	4.3	265
107	Allogeneic bone marrow stromal cells promote glial–axonal remodeling without immunologic sensitization after stroke in rats. Experimental Neurology, 2006, 198, 313-325.	4.1	97
108	Nitric oxide regulates Angiopoietin1/Tie2 expression after stroke. Neuroscience Letters, 2006, 404, 28-32.	2.1	34

#	Article	IF	CITATIONS
109	Neurorestorative treatment of stroke: Cell and pharmacological approaches. NeuroRx, 2006, 3, 466-473.	6.0	156
110	Atorvastatin Induction of VEGF and BDNF Promotes Brain Plasticity after Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 281-290.	4.3	402
111	Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia, 2005, 49, 407-417.	4.9	359
112	Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice. Journal of Neuroscience, 2005, 25, 2366-2375.	3.6	268
113	Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Research, 2004, 1005, 21-28.	2.2	132
114	Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of Neuroscience Research, 2003, 73, 778-786.	2.9	543
115	Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Annals of Neurology, 2003, 53, 743-751.	5.3	518
116	Global test statistics for treatment effect of stroke and traumatic brain injury in rats with administration of bone marrow stromal cells. Journal of Neuroscience Methods, 2003, 128, 183-190.	2.5	84
117	Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats. Circulation Research, 2003, 92, 692-699.	4.5	633
118	Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: Growth factor production. Journal of Neuroscience Research, 2002, 69, 687-691.	2.9	287
119	Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology, 2002, 22, 275-279.	1.2	358
120	Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences, 2001, 189, 49-57.	0.6	517
121	Adult Bone Marrow Transplantation after Stroke in Adult Rats. Cell Transplantation, 2001, 10, 31-40.	2.5	110
122	Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats. Stroke, 2001, 32, 1005-1011.	2.0	1,576
123	Adult Bone Marrow Transplantation after Stroke in Adult Rats. Cell Transplantation, 2001, 10, 31-40.	2.5	94
124	Intrastriatal Transplantation of Bone Marrow Nonhematopoietic Cells Improves Functional Recovery After Stroke in Adult Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1311-1319.	4.3	481