
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2136256/publications.pdf Version: 2024-02-01

Ηιρολκι Πειτι

#	Article	IF	CITATIONS
1	Electron-assisted deposition and interface control of naphthalenediimide derivative thin films. Japanese Journal of Applied Physics, 2022, 61, SE1013.	1.5	1
2	Deposition of organic–inorganic hybrid polymer thin films with a silsesquioxane unit. Japanese Journal of Applied Physics, 2022, 61, SE1010.	1.5	1
3	Dwell time and spin relaxation probability of Rb atoms on anti-spin-relaxation coatings. , 2021, , .		0
4	Measurement of the temperature dependence of dwell time and spin relaxation probability of Rb atoms on paraffin surfaces using a beam-scattering method. Physical Review A, 2021, 104, .	2.5	3
5	Vapor-deposition of naphthalene diimide derivatives and interface control between aluminum cathode. Japanese Journal of Applied Physics, 2020, 59, SDDA12.	1.5	2
6	Corrosion-resistant nickel thin films by electroless deposition in foam of electrolyte. MRS Communications, 2019, 9, 352-359.	1.8	3
7	Copper cladding on polymer surfaces by ionization-assisted deposition. Japanese Journal of Applied Physics, 2018, 57, 03EG11.	1.5	0
8	Controlling Organic/Inorganic Junctions by Covalent Tethering at the Interface. , 2018, , .		0
9	Scattering of an alkali-metal atomic beam on anti-spin-relaxation coatings. Physical Review A, 2018, 98, .	2.5	10
10	Interface control between an indium–tin-oxide electrode and a hole-transport polymer via reactive self-assembled monolayers. Japanese Journal of Applied Physics, 2017, 56, 04CL08.	1.5	2
11	Characteristics of nickel thin films prepared by electroless plating in foam of electrolyte. MRS Communications, 2017, 7, 953-959.	1.8	4
12	Preparation of charge injection layer by electrophoresis of diamond nanoparticles. Molecular Crystals and Liquid Crystals, 2017, 653, 200-206.	0.9	0
13	Vapor Deposition Polymerization and Molecular Orientation of Polyimide Thin Films. Journal of Physics: Conference Series, 2017, 924, 012017.	0.4	2
14	Vapor-Deposition Polymerization of Vinyl Polymer Thin Films of Naphthalene Diimide Derivatives. IEICE Transactions on Electronics, 2017, E100.C, 141-144.	0.6	0
15	Preparation of Phosphorescent Polymer Patterns by Spinâ€Coating Photoreactive Small Molecules. Electronics and Communications in Japan, 2016, 99, 58-64.	0.5	1
16	Electroless plating of Ni thin films using foam of electrolyte. Japanese Journal of Applied Physics, 2016, 55, 02BC06.	1.5	5
17	A New Plating Method using Foam of Electrolyte. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 170-174.	0.2	0
18	Formation of diamond nanoparticle thin films by electrophoretic deposition. Japanese Journal of Applied Physics, 2016, 55, 03DD10.	1.5	4

#	Article	IF	CITATIONS
19	Effect of Reactive Self-Assembled Monolayer at the Anode Interface of Organic Light-Emitting Diode. Journal of Nanoscience and Nanotechnology, 2016, 16, 3407-3413.	0.9	4
20	Vapor Deposition Polymerization of Polyimide with Naphthalene Unit. IEICE Transactions on Electronics, 2015, E98.C, 129-132.	0.6	1
21	Interface Control of Organic Devices by using Self-Assembled Monolayers. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 140-145.	0.2	0
22	Preparation of Phosphorescent Polymer Patterns by Spin-coating Photoreactive Small Molecules. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 150-155.	0.2	0
23	Preparation of a hole transport layer tethered to ITO surface via a self-assembled monolayer with reactive terminal group. Japanese Journal of Applied Physics, 2014, 53, 04EK04.	1.5	5
24	Preparation of surface-tethered polymer layer on inorganic substrates by photoreactive self-assembled monolayer. Thin Solid Films, 2014, 554, 78-83.	1.8	6
25	Synthesis and Physical Vapor Deposition of Low-Molecular-Weight Poly(3,4-ethylenedioxythiophene). Japanese Journal of Applied Physics, 2013, 52, 04CK10.	1.5	0
26	Preparation of a Functionally Graded Fluoropolymer Thin Film and Its Application to Antireflective Coating. Japanese Journal of Applied Physics, 2013, 52, 05DB01.	1.5	6
27	Effect of Photoreactive SAM at the Interface of an Indium-Tin Oxide Electrode and a Polymer Hole Transport Layer. IEICE Transactions on Electronics, 2013, E96.C, 365-368.	0.6	5
28	Improvement of Adhesion Strength of Fluoropolymer Thin Films by Vapor Deposition Polymerization. IEICE Transactions on Electronics, 2013, E96.C, 374-377.	0.6	3
29	Electroplating of Nickel Films Using Stable Foam Electrolyte Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 531.	0.2	1
30	Adhesion Strength of Nickel Films Deposited on Aluminum Surface in a Foam of Electrolyte. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 329.	0.2	2
31	Removal of a Bubble on the Surface of Solid in Liquid Using Flow of Foam. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 266.	0.2	3
32	Preparation of Poly(9-Vinylcarbazole) Thin Films Chemically Tethered to ITO Surface via Self-Assembled Monolayer Having Benzophenone Terminal Group. Molecular Crystals and Liquid Crystals, 2012, 568, 125-133.	0.9	6
33	Effect of Bubble Size in the Electroplating Using Foam of Electrolyte. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 269.	0.2	4
34	Vapor Deposition Polymerization of an Oxadiazole Polymer and Its Application to Organic Light Emitting Diode. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 1402-1407.	0.2	0
35	Preparation of Fluoropolymer Thin Films by Ion-Assisted Vapor Deposition Polymerization. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 1413-1417.	0.2	0

Preparation of Polymer Thin Films by Physical Vapor Deposition. , 2011, , 287-318.

9

#	Article	IF	CITATIONS
37	lon-assisted vapor deposition of acryl polymer thin films. Surface and Coatings Technology, 2011, 206, 884-888.	4.8	7
38	Maskless Patterning of Vapor-Deposited Photosensitive Film and its Application to Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 04DK07.	1.5	2
39	Manipulation of Work Function and Surface Free Energy of Tungsten Oxide Hole Injection Layer Modified with a Self-Assembled Monolayer. Japanese Journal of Applied Physics, 2011, 50, 01BB01.	1.5	2
40	Vapor Deposition Polymerization and Electrical Characterization of TPD Thin Films. IEICE Transactions on Electronics, 2011, E94-C, 157-163.	0.6	8
41	Fabrication of Fine Particles of Semiconducting Polymers by Electrospray Deposition. IEICE Transactions on Electronics, 2011, E94-C, 164-169.	0.6	2
42	Manipulation of Work Function and Surface Free Energy of Tungsten Oxide Hole Injection Layer Modified with a Self-Assembled Monolayer. Japanese Journal of Applied Physics, 2011, 50, 01BB01.	1.5	3
43	Maskless Patterning of Vapor-Deposited Photosensitive Film and its Application to Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 04DK07.	1.5	2
44	Effect of Self-Assembled Monolayer Modification on Indium–Tin Oxide Surface for Surface-Initiated Vapor Deposition Polymerization of Carbazole Thin Films. Japanese Journal of Applied Physics, 2010, 49, 04DK21.	1.5	13
45	Fabrication of Electrophoretic Display Driven by Membrane Switch Array. Japanese Journal of Applied Physics, 2010, 49, 04DK16.	1.5	5
46	Polymeric Film Deposition by Coevaporation of Polymerizable Monomer and Initiator. Japanese Journal of Applied Physics, 2010, 49, 01AE03.	1.5	6
47	Novel Electroplating Method Using Foam of an Electrolyte Solution. Journal of Chemical Engineering of Japan, 2010, 43, 966-971.	0.6	7
48	PHYSICAL VAPOR DEPOSITION OF POLYMER THIN FILMS AND ITS APPLICATION TO ORGANIC DEVICES. , 2010, , 319-346.		0
49	Selective Patterning of Organic Light-Emitting Diodes by Physical Vapor Deposition of Photosensitive Materials. Japanese Journal of Applied Physics, 2009, 48, 04C163.	1.5	9
50	Thermally stable and anisotropically conducting membranes consisting of sub-micron copper wires in polyimide ion track membranes. Journal of Membrane Science, 2009, 327, 182-187.	8.2	5
51	Synthesis and properties of nitrogenâ€linked poly(2,7â€carbazole)s as holeâ€transport material for organic light emitting diodes. Journal of Polymer Science Part A, 2009, 47, 3880-3891.	2.3	38
52	Vapor deposition polymerization of vinyl compounds and fabrication of OLED having double emissive layers. Thin Solid Films, 2009, 518, 703-706.	1.8	14
53	High-Vacuum Vapor Deposition and in Situ Monitoring of N-Carboxy Anhydride Benzyl Glutamate Polymerization. Langmuir, 2009, 25, 10711-10718.	3.5	21
54	Formation of polymer thin films and interface control by physical vapor deposition. Proceedings of SPIE, 2009, , .	0.8	6

#	Article	IF	CITATIONS
55	Formation of composite films of ion-track membranes embedded with oblique Cu nanowires for anisotropic infrared absorption. Radiation Physics and Chemistry, 2008, 77, 453-455.	2.8	3
56	Anionic Polymerization of 4-Diphenylaminostyrene: Characteristics of the Alkyllithium/ <i>N,N,N′,N′</i> -Tetramethylethylenediamine System for Living Anionic Polymerization. Macromolecules, 2008, 41, 3852-3858.	4.8	35
57	Phosphorescent Organic Light Emitting Diode Using Vinyl Derivatives of Hole Transport and Dopant Materials. Japanese Journal of Applied Physics, 2008, 47, 1279-1283.	1.5	17
58	Current-Induced Spectrum Change of Phosphorescent Organic Light-Emitting Diode Constructed with Vinyl Compounds. Japanese Journal of Applied Physics, 2008, 47, 1284-1289.	1.5	7
59	Interface Control by Surface-Initiated Deposition Polymerization and Its Application to Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2008, 47, 3156.	1.5	24
60	Preparation of Dye-Polymer Composite Films by Deposition Polymerization. IEEJ Transactions on Fundamentals and Materials, 2007, 127, 253-260.	0.2	2
61	Preparation of Carbazole Polymer Thin Films by Electron-Assisted Deposition of 3-(N-Carbazolyl)propyl Acrylate. Japanese Journal of Applied Physics, 2005, 44, 4182-4186.	1.5	24
62	Vapor Deposition Polymerization of a Polyimide Containing Perylene Units Characterized by Displacement Current Measurement. Japanese Journal of Applied Physics, 2005, 44, 2810-2814.	1.5	12
63	Preparation of Carbazole Polymer Thin Films Chemically Bound to Substrate Surface by Physical Vapor Deposition Combined with Self-Assembled Monolayer. Japanese Journal of Applied Physics, 2005, 44, 504-508.	1.5	21
64	Ionization-assisted deposition of LiF electron-injection layer for organic light-emitting diodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, L1.	1.6	3
65	Fabrication and characteristics of hole transporting materials–transition metal nanoparticle composites. Thin Solid Films, 2004, 449, 173-179.	1.8	5
66	Fabrication of electroluminescent devices using Sr as an electron injection layer. Electronics and Communications in Japan, 2003, 86, 36-41.	0.2	2
67	Organic EL device using SrOx as an electron injection material. Electronics and Communications in Japan, 2003, 86, 73-80.	0.2	О
68	Preparation of plastic spherical microlenses by use of a fluoropolymer stencil and oil-bath heating. Applied Optics, 2003, 42, 4008.	2.1	7
69	Novel polyimine as electroluminescent material prepared by vapor deposition polymerization. Thin Solid Films, 2003, 438-439, 75-79.	1.8	16
70	Semiconducting nanocomposite from titanium dioxide and organic charge transporting compound. Synthetic Metals, 2003, 139, 151-154.	3.9	2
71	Ionization-assisted deposition of strontium electron injection layer for organic light emitting diode. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 19-24.	2.1	2
72	A diaminomaleonitrile derivative as a new dopant for red-light-emitting electroluminescent device. Journal Physics D: Applied Physics, 2003, 36, 1789-1793.	2.8	3

#	Article	IF	CITATIONS
73	Ionization-assisted deposition of SrOx for electron injection layer of organic light emitting diode. Applied Physics Letters, 2002, 81, 3882-3884.	3.3	3
74	Comb-Like Polymer Thin Films Prepared by Ionization-Assisted Deposition of Acrylate Compounds. Materials Research Society Symposia Proceedings, 2002, 734, 9461.	0.1	3
75	Ionization-Assisted Deposition of SrO _x Thin Films for Electron Injection Layer of Organic Light Emitting Diodes. Molecular Crystals and Liquid Crystals, 2001, 370, 65-68.	0.3	2
76	Synthesis of TPD-Containing Polymer Thin Films by Physical Vapor Deposition. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	1
77	Polypeptide Ultrathin Films by Vacuum Deposition: Preparation and Characterization. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
78	Preparation of ITO electrode on the organic layer by sputtering. Electronics and Communications in Japan, 2000, 83, 23-30.	0.2	3
79	Luminescence of dye-doped polymer films induced by corona discharge. Journal of Applied Physics, 2000, 88, 5791-5795.	2.5	0
80	UV polymerization of triphenylaminemethylacrylate thin film on ITO substrate. Polymer, 1999, 40, 3061-3067.	3.8	30
81	Ionization-Assisted Deposition of 8-Hydroxyquinoline Aluminum for Organic Light Emitting Diode. Japanese Journal of Applied Physics, 1998, 37, 987-992.	1.5	12
82	Fabrication of Organic EL Devices by use of Ionization-Assisted Deposition Method. IEEJ Transactions on Fundamentals and Materials, 1998, 118, 1397-1404.	0.2	0
83	A Novel Phase Matching Technique for A Poled Polymer Waveguide. Molecular Crystals and Liquid Crystals, 1994, 255, 95-102.	0.3	3
84	Novel phase-matching concept for polymer waveguides. Proceedings of SPIE, 1993, 2025, 429.	0.8	3
85	PTCDA Films Deposited by Ionized Beam Method. Materials Research Society Symposia Proceedings, 1993, 316, 935.	0.1	4
86	Characterization by Photoluminescence of ICB-Grown CuInSe2Thin Films. Japanese Journal of Applied Physics, 1993, 32, 103.	1.5	6
87	Photoconductive Imaging Using CuInSe2Film. Japanese Journal of Applied Physics, 1993, 32, 113.	1.5	16
88	Chemical Properties of Porphyrin Thin Films Deposited by ICB. Materials Research Society Symposia Proceedings, 1992, 247, 551.	0.1	0
89	Optical characteristics of high-power excimer laser mirrors of single-crystal aluminum film with high reflectance and durability. Nuclear Instruments & Methods in Physics Research B, 1991, 59-60, 940-942.	1.4	4
90	Epitaxial growth of Cu films on Si by ionized cluster beam deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 1470-1473.	2.1	19

#	Article	IF	CITATIONS
91	Size estimation of vaporized-metal clusters by electron microscope. Nuclear Instruments & Methods in Physics Research B, 1989, 37-38, 886-890.	1.4	13
92	Aluminum Atom Surface Mobility on SiO2 During Ionized Cluster Beam Deposition. Materials Research Society Symposia Proceedings, 1988, 128, 131.	0.1	4
93	Characteristics of Polyethylene Thin Films Deposited by Ionized Cluster Beam. Materials Research Society Symposia Proceedings, 1987, 108, 201.	0.1	4
94	Thin films-preparation, structure and properties. Film formation and structure control by ionized cluster beam Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1987, 1987, 1908-1915.	0.1	0
95	Formation mechanism of large clusters from vaporized solid material. The Journal of Physical Chemistry, 1987, 91, 2463-2468.	2.9	57