## Serena Cattari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2135878/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings.<br>Engineering Structures, 2013, 56, 1787-1799.                                                                              | 5.3  | 478       |
| 2  | Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Archives of Computational Methods in Engineering, 2020, 27, 1153-1185.                                         | 10.2 | 245       |
| 3  | PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering, 2015, 13, 13-47.                                                                     | 4.1  | 198       |
| 4  | Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering, 2019, 17, 5583-5607.                                                                              | 4.1  | 161       |
| 5  | Inâ€plane strength of unreinforced masonry piers. Earthquake Engineering and Structural Dynamics, 2009, 38, 243-267.                                                                                                             | 4.4  | 137       |
| 6  | The use of the diagonal compression test to identify the shear mechanical parameters of masonry.<br>Construction and Building Materials, 2010, 24, 677-685.                                                                      | 7.2  | 99        |
| 7  | The heuristic vulnerability model: fragility curves for masonry buildings. Bulletin of Earthquake<br>Engineering, 2021, 19, 3129-3163.                                                                                           | 4.1  | 88        |
| 8  | Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bulletin of Earthquake Engineering, 2015, 13, 203-236.                                                                | 4.1  | 82        |
| 9  | Damage assessment of fortresses after the 2012 Emilia earthquake (Italy). Bulletin of Earthquake<br>Engineering, 2014, 12, 2333-2365.                                                                                            | 4.1  | 80        |
| 10 | Numerical simulation of the seismic response and soil–structure interaction for a monitored<br>masonry school building damaged by the 2016 Central Italy earthquake. Bulletin of Earthquake<br>Engineering, 2021, 19, 1181-1211. | 4.1  | 68        |
| 11 | Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Computers and Structures, 2019, 213, 51-71.                                                           | 4.4  | 63        |
| 12 | A hysteretic model for "frontal―walls in Pombalino buildings. Bulletin of Earthquake Engineering,<br>2012, 10, 1481-1502.                                                                                                        | 4.1  | 56        |
| 13 | Masonry Italian Code-Conforming Buildings. Part 2: Nonlinear Modelling and Time-History Analysis.<br>Journal of Earthquake Engineering, 2018, 22, 2010-2040.                                                                     | 2.5  | 54        |
| 14 | Comparative analysis of the fragility curves for Italian residential masonry and RC buildings. Bulletin of Earthquake Engineering, 2021, 19, 3209-3252.                                                                          | 4.1  | 47        |
| 15 | Fragility Functions of Masonry Buildings. Geotechnical, Geological and Earthquake Engineering, 2014,<br>, 111-156.                                                                                                               | 0.2  | 45        |
| 16 | Fragility curves for old masonry building types in Lisbon. Bulletin of Earthquake Engineering, 2015, 13, 3083-3105.                                                                                                              | 4.1  | 44        |
| 17 | PERPETUATE Project: The Proposal of a Performance-Based Approach to Earthquake Protection of Cultural Heritage. Advanced Materials Research, 2010, 133-134, 1119-1124.                                                           | 0.3  | 40        |
| 18 | Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses. Geotechnical, Geological and Earthquake Engineering, 2015, , 265-292.                                                      | 0.2  | 38        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses.<br>Earthquake and Structures, 2013, 4, 241-264.                                                                         | 1.0 | 38        |
| 20 | Nonlinear modeling of the seismic response of masonry structures: critical review and open issues towards engineering practice. Bulletin of Earthquake Engineering, 2022, 20, 1939-1997.                                 | 4.1 | 37        |
| 21 | Benchmarking the seismic assessment of unreinforced masonry buildings from a blind prediction test.<br>Structures, 2021, 31, 982-1005.                                                                                   | 3.6 | 35        |
| 22 | Benchmarking the software packages to model and assess the seismic response of unreinforced<br>masonry existing buildings through nonlinear static analyses. Bulletin of Earthquake Engineering,<br>2022, 20, 1901-1936. | 4.1 | 32        |
| 23 | Seismic fragility assessment of existing masonry buildings in aggregate. Engineering Structures, 2021, 247, 113218.                                                                                                      | 5.3 | 32        |
| 24 | Sensitivity analysis for setting up the investigation protocol and defining proper confidence factors for masonry buildings. Bulletin of Earthquake Engineering, 2015, 13, 129-151.                                      | 4.1 | 31        |
| 25 | Classification of cultural heritage assets and seismic damage variables for the identification of performance levels. WIT Transactions on the Built Environment, 2011, , .                                               | 0.0 | 28        |
| 26 | Seismic performance-based assessment of "Gaioleiro―buildings. Engineering Structures, 2014, 80,<br>486-500.                                                                                                              | 5.3 | 27        |
| 27 | Performance-based assessment of the Great Mosque of Algiers. Bulletin of Earthquake Engineering, 2015, 13, 369-388.                                                                                                      | 4.1 | 26        |
| 28 | Are the nonlinear static procedures feasible for the seismic assessment of irregular existing masonry buildings?. Engineering Structures, 2019, 200, 109700.                                                             | 5.3 | 26        |
| 29 | A comparative study on a complex URM building: part l—sensitivity of the seismic response to different<br>modelling options in the equivalent frame models. Bulletin of Earthquake Engineering, 2022, 20,<br>2115-2158.  | 4.1 | 24        |
| 30 | On the seismic response of buildings in aggregate: Analysis of a typical masonry building from Azores.<br>Structures, 2017, 10, 184-196.                                                                                 | 3.6 | 23        |
| 31 | Earthquake damage assessment of masonry churches: proposal for rapid and detailed forms and derivation of empirical vulnerability curves. Bulletin of Earthquake Engineering, 2019, 17, 3327-3364.                       | 4.1 | 21        |
| 32 | Definition of fragility curves through nonlinear static analyses: procedure and application to a mixed masonry-RC building stock. Bulletin of Earthquake Engineering, 2020, 18, 513-545.                                 | 4.1 | 21        |
| 33 | A review of numerical models for masonry structures. , 2019, , 3-53.                                                                                                                                                     |     | 20        |
| 34 | Seismic assessment of nineteenth and twentieth centuries URM buildings in Lisbon: structural features and derivation of fragility curves. Bulletin of Earthquake Engineering, 2020, 18, 645-672.                         | 4.1 | 20        |
| 35 | Modernist Unreinforced Masonry (URM) Buildings of Barcelona: Seismic Vulnerability and Risk<br>Assessment. International Journal of Architectural Heritage, 2015, 9, 214-230.                                            | 3.1 | 19        |
| 36 | Masonry Italian Code-Conforming Buildings. Part 1: Case Studies and Design Methods. Journal of Earthquake Engineering, 2018, 22, 54-73.                                                                                  | 2.5 | 19        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modelling and Seismic Response Analysis of Existing URM Structures. Part 2: Archetypes of Italian<br>Historical Buildings. Journal of Earthquake Engineering, 2023, 27, 1849-1874.                                        | 2.5 | 19        |
| 38 | A methodological framework to relate the earthquake-induced frequency reduction to structural damage in masonry buildings. Bulletin of Earthquake Engineering, 2022, 20, 4603-4638.                                       | 4.1 | 17        |
| 39 | Vulnerability assessment of Hassan Bey's Mansion in Rhodes. Bulletin of Earthquake Engineering, 2015,<br>13, 347-368.                                                                                                     | 4.1 | 16        |
| 40 | Dynamic calibration and seismic validation of numerical models of URM buildings through permanent monitoring data. Earthquake Engineering and Structural Dynamics, 2021, 50, 2690-2711.                                   | 4.4 | 16        |
| 41 | On the use of continuum Finite Element and Equivalent Frame models for the seismic assessment of masonry walls. Journal of Building Engineering, 2021, 43, 102519.                                                        | 3.4 | 16        |
| 42 | Post-earthquake Damage Simulation of Two Colonial Unreinforced Clay Brick Masonry Buildings<br>Using the Equivalent Frame Approach. Structures, 2019, 19, 212-226.                                                        | 3.6 | 14        |
| 43 | Site effects and soil-foundation-structure interaction: derivation of fragility curves and comparison with Codes-conforming approaches for a masonry school. Soil Dynamics and Earthquake Engineering, 2022, 154, 107125. | 3.8 | 14        |
| 44 | Seismic assessment and retrofitting of Pombalino buildings by pushover analyses. Earthquake and Structures, 2014, 7, 57-82.                                                                                               | 1.0 | 13        |
| 45 | On the reliability of the equivalent frame models: the case study of the permanently monitored<br>Pizzoli's town hall. Bulletin of Earthquake Engineering, 2022, 20, 2187-2217.                                           | 4.1 | 13        |
| 46 | Pombalino Constructions: Description and Seismic Assessment. Building Pathology and Rehabilitation, 2014, , 187-233.                                                                                                      | 0.2 | 13        |
| 47 | Comparing the Observed and Numerically Simulated Seismic Damage: A Unified Procedure for<br>Unreinforced Masonry and Reinforced Concrete Buildings. Journal of Earthquake Engineering, 2024,<br>28, 1157-1193.            | 2.5 | 13        |
| 48 | Performance of Fiber Reinforced Mortar coating for irregular stone masonry: Experimental and analytical investigations. Construction and Building Materials, 2021, 294, 123508.                                           | 7.2 | 12        |
| 49 | DISCUSSION ON DATA RECORDED BY THE ITALIAN STRUCTURAL SEISMIC MONITORING NETWORK ON THREE MASONRY STRUCTURES HIT BY THE 2016-2017 CENTRAL ITALY EARTHQUAKE. , 2019, , .                                                   |     | 12        |
| 50 | Cultural Heritage Monuments and Historical Buildings: Conservation Works and Structural Retrofitting. Building Pathology and Rehabilitation, 2018, , 25-57.                                                               | 0.2 | 10        |
| 51 | Use of the model parameter sensitivity analysis for the probabilistic-based seismic assessment of existing buildings. Bulletin of Earthquake Engineering, 2019, 17, 1983-2009.                                            | 4.1 | 10        |
| 52 | Equivalent frame idealization of walls with irregular openings in masonry buildings. Engineering<br>Structures, 2022, 256, 114055.                                                                                        | 5.3 | 10        |
| 53 | Sensitivity analysis of the seismic performance of ancient mixed masonry-RC buildings in Lisbon.<br>International Journal of Masonry Research and Innovation, 2018, 3, 108.                                               | 0.4 | 9         |
| 54 | Ambient vibration tools to validate the rigid diaphragm assumption in the seismic assessment of buildings. Earthquake Engineering and Structural Dynamics, 2020, 49, 194-211.                                             | 4.4 | 9         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Displacement-Based Simplified Seismic Loss Assessment of Masonry Buildings. Journal of Earthquake<br>Engineering, 2020, 24, 23-59.                                                                            | 2.5 | 9         |
| 56 | Validation of displacement-based procedures for rocking assessment of cantilever masonry elements.<br>Structures, 2021, 33, 3397-3416.                                                                        | 3.6 | 9         |
| 57 | Fragility Functions for Tall URM Buildings around Early 20th Century in Lisbon. Part 1: Methodology and Application at Building Level. International Journal of Architectural Heritage, 2021, 15, 349-372.    | 3.1 | 7         |
| 58 | Fragility Functions for Tall URM Buildings around Early 20th Century in Lisbon, Part 2: Application to<br>Different Classes of Buildings. International Journal of Architectural Heritage, 2021, 15, 373-389. | 3.1 | 7         |
| 59 | Linear static procedures for the seismic assessment of masonry buildings: Open issues in the new generation of European codes. Structures, 2020, 26, 427-440.                                                 | 3.6 | 7         |
| 60 | Investigating the combined role of the structural vulnerability and site effects on the seismic response of a URM school hit by the Central Italy 2016 earthquake. Structures, 2022, 40, 386-402.             | 3.6 | 7         |
| 61 | Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls. AIP Conference Proceedings, 2008, , .                                                                                            | 0.4 | 6         |
| 62 | Seismic Behavior of Lisbon Mixed Masonry-RC Buildings With Historical Value: A Contribution for the<br>Practical Assessment. Frontiers in Built Environment, 2018, 4, .                                       | 2.3 | 6         |
| 63 | Seismic Assessment of Existing Irregular Masonry Buildings by Nonlinear Static and Dynamic Analyses.<br>Geotechnical, Geological and Earthquake Engineering, 2018, , 123-151.                                 | 0.2 | 6         |
| 64 | Modelling and Seismic Response Analysis of Existing URM Structures. Part: Archetypes of Italian<br>Modern Buildings. Journal of Earthquake Engineering, 2024, 28, 1130-1156.                                  | 2.5 | 6         |
| 65 | The Case Study of Santa Maria Paganica Church Damaged by 2009 L'Aquila Earthquake. Advanced<br>Materials Research, 2010, 133-134, 163-168.                                                                    | 0.3 | 5         |
| 66 | A Methodology for Approaching the Reconstruction of Historical Centres Heavily Damaged by 2009<br>L'Aquila Earthquake. Advanced Materials Research, 2010, 133-134, 1113-1118.                                 | 0.3 | 5         |
| 67 | 3DGIS representation for supporting seismic mitigation policies at urban scale: The case study of<br>Lisbon. Journal of Cultural Heritage, 2020, 45, 265-278.                                                 | 3.3 | 5         |
| 68 | A Seismic Loss Assessment Procedure for Masonry Buildings. , 2015, , .                                                                                                                                        |     | 4         |
| 69 | Integration of Modelling Approaches for the Seismic Assessment of Complex URM Buildings: The<br>Podestà Palace in Mantua, Italy. Buildings, 2021, 11, 269.                                                    | 3.1 | 4         |
| 70 | Sensitivity and Preliminary Analyses for the Seismic Assessment of Ardinghelli Palace. RILEM<br>Bookseries, 2019, , 2412-2421.                                                                                | 0.4 | 4         |
| 71 | Seismic Out-of-Plane Assessment of Podestà Palace in Mantua (Italy). Key Engineering Materials, 2014,<br>624, 88-96.                                                                                          | 0.4 | 3         |
| 72 | RINTC PROJECT: NONLINEAR DYNAMIC ANALYSES OF ITALIAN CODE-CONFORMING URM BUILDINGS FOR COLLAPSE RISK ASSESSMENT. , 2017, , .                                                                                  |     | 3         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | ON THE SOIL-STRUCTURE INTERACTION IN THE SEISMIC RESPONSE OF A MONITORED MASONRY SCHOOL BUILDING STRUCK BY THE 2016-2017 CENTRAL ITALY EARTHQUAKE. , 2019, , .              |     | 3         |
| 74 | Buildings Behaviour in Urban Fabric: The Safety Assessment Issue in the Post Earthquake<br>Reconstruction Plans. Key Engineering Materials, 2014, 628, 96-101.              | 0.4 | 2         |
| 75 | SEISMIC ASSESSMENT OF COMPLEX ASSETS THROUGH NONLINEAR STATIC ANALYSES: THE FORTRESS IN SAN FELICE SUL PANARO HIT BY THE 2012 EARTHQUAKE IN ITALY. , 2017, , .              |     | 2         |
| 76 | An Analytical Mechanical Model for the Seismic Assessment of Bell Towers. Key Engineering Materials,<br>0, 624, 97-105.                                                     | 0.4 | 1         |
| 77 | Displacement-Based Assessment of Cantilever Masonry Elements under Out-of-Plane Actions. , 2015, , .                                                                        |     | 0         |
| 78 | Seismic Performance Based Assessment of the Arsenal de Milly of the Medieval City of Rhodes.<br>Computational Methods in Applied Sciences (Springer), 2015, , 365-392.      | 0.3 | 0         |
| 79 | Performance-based assessment of masonry churches: application to San Clemente Abbey in Castiglione<br>a Casauria (Italy). , 2019, , 55-89.                                  |     | 0         |
| 80 | Sensitivity analysis of the seismic performance of ancient mixed masonry-RC buildings in Lisbon.<br>International Journal of Masonry Research and Innovation, 2018, 3, 108. | 0.4 | 0         |