
Tohru S Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2135423/publications.pdf Version: 2024-02-01

ΤΟΗΡΗ S SHZURI

#	Article	IF	CITATIONS
1	Deformationâ€resistant Ta _{0.2} Hf _{0.8} C solidâ€solution ceramic with superior flexural strength at 2000°C. Journal of the American Ceramic Society, 2022, 105, 512-524.	3.8	8
2	Fabrication of Textured Porous Ti ₃ SiC ₂ by Slip Casting under High Magnetic Field and Microstructural Evolution through High Temperature Deformation. Materials Transactions, 2022, 63, 133-140.	1.2	3
3	Extended Distribution of Relaxation Time Analysis for Electrochemical Impedance Spectroscopy. Electrochemistry, 2022, 90, 017004-017004.	1.4	9
4	Ultra-high temperature flexure and strain driven amorphization in polycrystalline boron carbide bulks. Scripta Materialia, 2022, 210, 114487.	5.2	3
5	pH-controlled synthesis and spark plasma sintering of fine and homogeneous MgZr ₄ (PO ₄) ₆ powder. Journal of the Ceramic Society of Japan, 2022, 130, 243-248.	1.1	Ο
6	Effect of CNT addition and its orientation on thermal shock resistance of B ₄ C/CNT composites fabricated by hot-pressing. Journal of Asian Ceramic Societies, 2022, 10, 370-377.	2.3	2
7	Anisotropic thermal expansion and ionic conductivity of a crystal-oriented, Mg2+-conducting NASICON-type solid electrolyte. Ceramics International, 2022, 48, 10733-10740.	4.8	1
8	Improvement of Thermoelectric Properties via Texturation Using a Magnetic Slip Casting Process–The Illustrative Case of CrSi ₂ . Chemistry of Materials, 2022, 34, 1143-1156.	6.7	3
9	Towards high degree of c-axis orientation in MgB2 bulks. Journal of Magnesium and Alloys, 2022, 10, 2173-2184.	11.9	2
10	Reactive consolidation and high-temperature strength of HfB2–SiB6. Journal of the European Ceramic Society, 2022, 42, 4783-4792.	5.7	1
11	Highâ€ŧemperature reactive synthesis of the Zr–Ta multiboride with a supercomposite structure. Journal of the American Ceramic Society, 2022, 105, 6989-7002.	3.8	3
12	Effect of volume ratio on optical and mechanical properties of Y2O3-MgO composites fabricated by spark-plasma-sintering process. Journal of the European Ceramic Society, 2021, 41, 2096-2105.	5.7	19
13	High-rate supercapacitor using magnetically aligned graphene. Journal of Power Sources, 2021, 482, 228995.	7.8	34
14	Partially-oriented MgB2 superconducting bulks with addition of B4C and cubic BN obtained by slip casting under high magnetic field and spark plasma sintering. Materials Research Bulletin, 2021, 134, 111103.	5.2	2
15	Simulation of densification behavior of nano-powder in final sintering stage: Effect of pore-size distribution. Journal of the European Ceramic Society, 2021, 41, 625-634.	5.7	7
16	Fabrication of textured B4C ceramics with oriented tubal pores by strong magnetic field-assisted colloidal processing. Journal of the European Ceramic Society, 2021, 41, 2366-2374.	5.7	4
17	Elastic isotropy originating from heterogeneous interlayer elastic deformation in a Ti3SiC2 MAX phase with a nanolayered crystal structure. Journal of the European Ceramic Society, 2021, 41, 2278-2289.	5.7	7
18	Effect of the Heating Rate on the Spark-Plasma-Sintering (SPS) of Transparent Y2O3 Ceramics: Microstructural Evolution, Mechanical and Optical Properties. Ceramics, 2021, 4, 56-69.	2.6	6

#	Article	IF	CITATIONS
19	Free Analysis and Visualization Programs for Electrochemical Impedance Spectroscopy Coded in Python. Electrochemistry, 2021, 89, 218-222.	1.4	13
20	Production of crystal-oriented lanthanum silicate oxyapatite ceramics with anisotropic electrical conductivity and thermal expansion. Open Ceramics, 2021, 6, 100100.	2.0	3
21	Fabrication of Textured Porous Ti ₃ SiC ₂ by Slip Casting under High Magnetic Field and Microstructural Evolution through High Temperature Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 256-263.	0.4	3
22	Enhanced ionic conductivity of aluminum tungstate by crystallographic orientation in a strong magnetic field. Journal of the American Ceramic Society, 2021, 104, 6364.	3.8	6
23	Effect of Powder Calcination Conditions on IR Transmission in Y ₂ O ₃ -MgO Nanocomposites Fabricated by Pulsed Electric Current Sintering Technique. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 500-506.	0.2	0
24	High-temperature toughening in ternary medium-entropy (Ta _{1/3} Ti _{1/3} Zi _{1/3})C carbide consolidated using spark-plasma sintering. Journal of Asian Ceramic Societies, 2020, 8, 1262-1270.	2.3	16
25	Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders. Open Ceramics, 2020, 2, 100015.	2.0	19
26	Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering. Journal of the European Ceramic Society, 2020, 40, 4547-4555.	5.7	25
27	Synthesis of highly-infrared transparent Y2O3–MgO nanocomposites by colloidal technique and SPS. Ceramics International, 2020, 46, 13669-13676.	4.8	20
28	Vickers indentation tests on olivine: size effects. Physics and Chemistry of Minerals, 2020, 47, 1.	0.8	7
29	Development of Impedance Analysis Software Implementing a Support Function to Find Good Initial Guess Using an Interactive Graphical User Interface. Electrochemistry, 2020, 88, 39-44.	1.4	13
30	Advanced control of crystallographic orientation in ceramics by strong magnetic field. Journal of the Ceramic Society of Japan, 2020, 128, 1005-1012.	1.1	5
31	Fabrication and Anisotropic Electrical Property for Oriented Ceramic of Li-(Nb,Ta)-Ti-O System under High-magnetic Field. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 208-212.	0.2	1
32	Synthesis of medium-entropy (Zr _{1/3} Hf _{1/3} Ta _{1/3})B _{2using the spark plasma consolidation of diboride powders. Journal of the Ceramic Society of Japan, 2020, 128, 977-980.}	t: 1.1	7
33	Orientation Dependence of Plastic Deformation Behavior and Fracture Energy Absorption Mechanism around Vickers Indentation of Textured Ti ₃ SiC ₂ Sintered Body. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 607-614.	0.2	1
34	Effect of Al2O3 addition on texturing in a rotating strong magnetic field and densification of B4C. Ceramics International, 2019, 45, 18222-18228.	4.8	12
35	Evaluation of thermal shock fracture resistance of B4C/CNT composites with a high-frequency induction-heating furnace. Materials Today: Proceedings, 2019, 16, 137-143.	1.8	3
36	High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Materialia, 2019, 164, 12-16.	5.2	109

#	Article	IF	CITATIONS
37	Microstructure and flexural strength of hafnium diboride via flash and conventional spark plasma sintering. Journal of the European Ceramic Society, 2019, 39, 898-906.	5.7	11
38	Effect of oxygen partial pressure during sintering on electric properties of BiFeO ₃ -based piezoelectric ceramics. Journal of the Ceramic Society of Japan, 2019, 127, 383-387.	1.1	2
39	Anisotropic Electric Conductivity and Battery Performance in <i>C</i> -axis Oriented Lanthanum Silicate Oxyapatite Prepared by Slip Casting in a Strong Magnetic Field. Materials Transactions, 2019, 60, 1949-1953.	1.2	5
40	Theoretical analysis of experimental densification kinetics in final sintering stage of nano-sized zirconia. Journal of the European Ceramic Society, 2019, 39, 1359-1365.	5.7	6
41	Development of Laser Optical Elements by Spark Plasma Sintering Technique. The Review of Laser Engineering, 2019, 47, 448.	0.0	Ο
42	Effect of crystallographic orientation on transparency of alumina prepared using magnetic alignment and SPS. Journal of the European Ceramic Society, 2018, 38, 2735-2741.	5.7	29
43	Development of an Algorithm for Automatic Analysis of the Impedance Spectrum Based on a Measurement Model. Journal of the Physical Society of Japan, 2018, 87, 034004.	1.6	4
44	Stabilization of the high-temperature phase and total conductivity of yttrium-doped lanthanum germanate oxyapatite. Journal of the Ceramic Society of Japan, 2018, 126, 91-98.	1.1	3
45	Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition. Journal of Materials Science, 2018, 53, 2396-2404.	3.7	14
46	Transparent ultrafine Yb ³⁺ :Y ₂ O ₃ laser ceramics fabricated by spark plasma sintering. Journal of the American Ceramic Society, 2018, 101, 694-702.	3.8	37
47	Biomimetic macroscopic mesocrystalline films produced by oriented assembly of nanorods under magnetic field. Nanoscale, 2018, 10, 22161-22165.	5.6	3
48	Orientation Control and Anisotropy Evaluation of SLFC(Sr _{3-x} La _x Fe _{2-y} Co _{yLayered Perovskite Mixed Ionic–Electronic Conductor. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 114-120.}	b>:O< 0.2	;;sub>7-Î&
49	Anisotropic Electronic Conductivity and Battery Performance in C-axis Oriented Lanthanum Silicate Oxyapatite Prepared by Slip Casting in a Strong Magnetic Field. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 121-126.	0.2	0
50	Preparation of textured B ₄ C compact with oriented pore-forming agent by slip casting under strong magnetic field. Journal of the Ceramic Society of Japan, 2018, 126, 832-838.	1.1	3
51	Distribution of Relaxation Time Analysis for Non-ideal Immittance Spectrum: Discussion and Progress. Journal of the Physical Society of Japan, 2018, 87, 094002.	1.6	19
52	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powder. Materials Transactions, 2018, 59, 829-834.	1.2	10
53	Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi _{0.5} Na _{0.5} Na _{O.5} O.15BaTiO _{Gi and content of the Ceramic Society of Japan, 2018, 126, 542-546.}	.gt;31.1	ub>
54	Fabrication of translucent AlN ceramics with MgF ₂ additive by spark plasma sintering. Journal of the American Ceramic Society, 2018, 101, 4430-4433.	3.8	16

Tohru S Suzuki

#	Article	IF	CITATIONS
55	Fabrication and anisotropic electronic property for oriented Li1+â^'Nb1â^'â^'3Ti+4O3 solid solution by slip casting in a high magnetic field. Advanced Powder Technology, 2017, 28, 2373-2379.	4.1	6
56	Fabrication of 〈110〉 grain-oriented 0.15BaTiO3–0.85(Bi0.5Na0.5)TiO3ceramics by a reactive templated growth method. Japanese Journal of Applied Physics, 2017, 56, 10PD06.	grain 1.5	6
57	Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic. Journal of Advanced Ceramics, 2017, 6, 120-128.	17.4	25
58	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 552-557.	0.2	0
59	Evaluation of densification and grain-growth behavior during isothermal sintering of zirconia. Journal of the Ceramic Society of Japan, 2017, 125, 357-363.	1.1	3
60	Development of Functional Properties in Ceramics by Microstructure Control Using a Magnetic Field. Journal of the Society of Powder Technology, Japan, 2017, 54, 41-45.	0.1	0
61	Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field. Physics and Chemistry of Minerals, 2016, 43, 689-706.	0.8	2
62	Electrophoretic fabrication of a-b plane oriented La2NiO4 cathode onto electrolyte in strong magnetic field for low-temperature operating solid oxide fuel cell. Journal of the European Ceramic Society, 2016, 36, 4077-4082.	5.7	19
63	Triaxial Crystalline Orientation of MgTi ₂ O ₅ Achieved Using a Strong Magnetic Field and Geometric Effect. Journal of the American Ceramic Society, 2016, 99, 1852-1854.	3.8	7
64	Development of an electrochemical impedance analysis program based on the expanded measurement model. Journal of the Ceramic Society of Japan, 2016, 124, 943-949.	1.1	18
65	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ MAX Phase Systems. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 970-975.	0.2	2
66	Magnetic field alignment in highly concentrated suspensions for gelcasting process. Ceramics International, 2016, 42, 294-301.	4.8	6
67	Densification kinetics during isothermal sintering of 8YSZ. Journal of the European Ceramic Society, 2016, 36, 1269-1275.	5.7	22
68	Sinterable powder fabrication of lanthanum silicate oxyapatite based on solid-state reaction method. Journal of the Ceramic Society of Japan, 2015, 123, 274-279.	1.1	8
69	Fabrication of (111)-oriented Tetragonal BaTiO ₃ Ceramics by an Electrophoretic Deposition in a High Magnetic Field. Transactions of the Materials Research Society of Japan, 2015, 40, 223-226.	0.2	8
70	Highly anisotropic single crystal-like La2Ti2O7 ceramic produced by combined magnetic field alignment and templated grain growth. Journal of the European Ceramic Society, 2015, 35, 1771-1776.	5.7	20
71	Dense SiC containing strongly aligned plate-like grains by magnetic treatment. Ceramics International, 2015, 41, 5079-5084.	4.8	12
72	Microstructure and high-temperature strength of textured and non-textured ZrB ₂ ceramics. Science and Technology of Advanced Materials, 2014, 15, 014202.	6.1	43

#	ARTICLE	IF	CITATIONS
73	Microstructure and <scp>A</scp> nisotropic <scp>P</scp> roperties of <scp>I</scp> extured <scp>Z</scp> r <scp>B</scp> ₂ and <scp>Z</scp> r <scp>B</scp> ₂ â€" <scp>M</scp> o <scp>S</scp> i ₂ Â <scp>C</scp> eran <scp>P</scp> repared by <scp>S</scp> trong <scp>M</scp> agnetic <scp>F</scp> ield	nic 2. 1	22
74	Magnesium ion distribution and defect concentrations of MgO-doped lanthanum silicate oxyapatite. Solid State Ionics, 2014, 258, 24-29.	2.7	4
75	Fabrication of textured alumina by magnetic alignment via gelcasting based on low-toxic system. Journal of the European Ceramic Society, 2014, 34, 3841-3848.	5.7	19
76	Fabrication of Textured Ti3SiC2 Ceramics by Slip Casting in a Magnetic Field and Pulsed Electric Current Sintering. Journal of the Society of Powder Technology, Japan, 2014, 51, 163-168.	0.1	2
77	Transparent ZnAl ₂ O ₄ ceramics fabricated by spark plasma sintering. Journal of the Ceramic Society of Japan, 2014, 122, 784-787.	1.1	23
78	Fabrication of textured Ti ₃ SiC ₂ ceramic by slip casting in a strong magnetic field and pressureless sintering. Journal of the Ceramic Society of Japan, 2014, 122, 817-821.	1.1	18
79	Dispersion/Coagulation and Colloidal Processing of Ceramic Particles. Journal of the Society of Powder Technology, Japan, 2014, 51, 462-472.	0.1	1
80	Fabrication of Textured Ceramics Using Mn and Nb-doped Hexagonal BaTiO ₃ by an Electrophoretic Deposition in a High Magnetic Field. Transactions of the Materials Research Society of Japan, 2014, 39, 199-202.	0.2	1
81	Analysis of abnormal grain growth of oriented LiCoO2 prepared by slip casting in a strong magnetic field. Journal of the European Ceramic Society, 2013, 33, 3059-3064.	5.7	14
82	Anisotropy in activation energy of textured LiCoO2 for the initial stage of sintering. Journal of the European Ceramic Society, 2013, 33, 1037-1044.	5.7	8
83	Effect of Hydrothermal Treatment on the Piezoelectric Response of Oriented Barium Titanate Ceramics. Key Engineering Materials, 2013, 566, 45-49.	0.4	0
84	Twoâ€Dimensional Orientation in <scp><scp>Bi</scp></scp> ₄ <scp>Ti</scp> ₃ <scp>O</scp> < Prepared Using Platelet Particles and a Magnetic Field. Journal of the American Ceramic Society, 2013, 96, 1085-1089.	sub>12 </td <td>sub></td>	sub>
85	Ideal design of textured LiCoO2 sintered electrode for Li-ion secondary battery. APL Materials, 2013, 1, .	5.1	20
86	Electrophoretic deposition of orientation-controlled zeolite L layer on porous ceramic substrate. Journal of the Ceramic Society of Japan, 2013, 121, 370-372.	1.1	5
87	Fabrication of textured Ti ₃ AlC ₂ by spark plasma sintering and their anisotropic mechanical properties. Journal of the Ceramic Society of Japan, 2013, 121, 366-369.	1.1	23
88	Hydrothermal transformation of magnetically orientation-controlled seed layer into orientation-retained dense, continuous film in clear reaction solution. Journal of the Ceramic Society of Japan, 2013, 121, 550-554.	1.1	1
89	Fabrication of textured α-alumina in high magnetic field via gelcasting with the use of glucose derivative. Journal of the Ceramic Society of Japan, 2013, 121, 89-94.	1.1	7
90	AAO-template assisted synthesis and size control of one-dimensional TiO ₂ nanomaterials. Journal of the Ceramic Society of Japan, 2013, 121, 915-918.	1.1	10

Tohru S Suzuki

#	Article	IF	CITATIONS
91	Fabrication of Textured BaTiO ₃ Ceramics by Electrophoretic Deposition in A High Magnetic Field using Single-domain Particles. Transactions of the Materials Research Society of Japan, 2013, 38, 41-44.	0.2	4
92	Orientation Control of Hematite via Transformation of Textured Goethite Prepared by EPD in a Strong Magnetic Field. Key Engineering Materials, 2012, 507, 227-231.	0.4	1
93	Hydrogen generation from water using Mg nanopowder produced by arc plasma method. Science and Technology of Advanced Materials, 2012, 13, 025009.	6.1	36
94	Textured Ti ₃ SiC ₂ by gelcasting in a strong magnetic field. Journal of the Ceramic Society of Japan, 2012, 120, 544-547.	1.1	11
95	Textured Ti ₃ SiC ₂ by gelcasting in a strong magnetic field. Journal of the Ceramic Society of Japan, 2012, 120, 616-B-616-B.	1.1	1
96	Fabrication and Analysis of the Oriented <scp><scp>LiCoO</scp></scp> ₂ by Slip Casting in a Strong Magnetic Field. Journal of the American Ceramic Society, 2012, 95, 3428-3433.	3.8	11
97	Electrophoretic Deposition of <scp><scp>Ti</scp></scp> 3 <scp><sic< scp="">2 and Texture Development in a Strong Magnetic Field. Journal of the American Ceramic Society, 2012, 95, 2857-2862.</sic<></scp>	3.8	27
98	Uniformly Porous MgTi ₂ O ₅ with Narrow Poreâ€Size Distribution: XAFS Study, Improved In Situ Synthesis, and New In Situ Surface Coating. Advanced Engineering Materials, 2012, 14, 1134-1138.	3.5	21
99	Orientation control of mordenite zeolite in strong magnetic field. Microporous and Mesoporous Materials, 2012, 151, 188-194.	4.4	16
100	Texture development in anatase and rutile prepared by slip casting in a strong magnetic field. Journal of the Ceramic Society of Japan, 2011, 119, 334-337.	1.1	13
101	Texture development of surface-modified SiC prepared by EPD in a strong magnetic field. Journal of the Ceramic Society of Japan, 2011, 119, 667-671.	1.1	4
102	Textured lead titanate ceramics fabricated by slip casting under a high magnetic field. Journal of the Ceramic Society of Japan, 2011, 119, 60-64.	1.1	8
103	Fabrication of the oriented LiCoO2 sheet using a strong magnetic field. Journal of the Ceramic Society of Japan, 2011, 119, 701-705.	1.1	8
104	Tailoring Ti ₃ SiC ₂ Ceramic via a Strong Magnetic Field Alignment Method Followed by Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 742-748.	3.8	57
105	High-hardness B4C textured by a strong magnetic field technique. Scripta Materialia, 2011, 64, 256-259.	5.2	47
106	Preparation and Characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under a High Magnetic Field. Key Engineering Materials, 2011, 485, 313-316.	0.4	4
107	Preparation and Dielectric Properties of Dense Barium Titanate Nanoparticle Accumulations by Electrophoresis Deposition Method. Key Engineering Materials, 2011, 485, 35-38.	0.4	2
108	Microstructure Control of Barium Titanate – Potassium Niobate Solid Solution System Ceramics by MPB Engineering and their Piezoelectric Properties. Key Engineering Materials, 2011, 485, 89-92.	0.4	9

Тонки S Suzuki

#	Article	IF	CITATIONS
109	Fabrication of c-axis oriented zinc oxide by electrophoretic deposition in a rotating magnetic field. Journal of the European Ceramic Society, 2010, 30, 1171-1175.	5.7	13
110	Effect of sintering conditions on microstructure orientation in α-SiC prepared by slip casting in a strong magnetic field. Journal of the European Ceramic Society, 2010, 30, 2813-2817.	5.7	44
111	The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field. Acta Materialia, 2010, 58, 146-161.	7.9	49
112	Electrophretic Deposition of LDC/LSGM/LDC Tri-layers on NiO-YSZ for Anode-supported SOFC. Transactions of the Materials Research Society of Japan, 2010, 35, 723-725.	0.2	2
113	Enhanced Piezoelectric Properties of Barium Titanate-Potassium Niobate Solid Solution System Ceramics by MPB Engineering. Key Engineering Materials, 2010, 445, 11-14.	0.4	9
114	Hybrid processing and anisotropic sintering shrinkage in textured ZnO ceramics. Science and Technology of Advanced Materials, 2010, 11, 065006.	6.1	14
115	Synthesis, Microstructure and Mechanical Properties of ZrB ₂ Ceramic Prepared by Mechanical Alloying and Spark Plasma Sintering. Key Engineering Materials, 2010, 434-435, 165-168.	0.4	1
116	Sedimentation classification treatment effect of starting powders in slip casting on magneto-orientation of mordenite zeolite. Transactions of the Materials Research Society of Japan, 2010, 35, 701-703.	0.2	2
117	Preparation of Highly Oriented Transparent (Sr,Ba)Nb2O6Ceramics and Their Ferroelectric Properties. Japanese Journal of Applied Physics, 2009, 48, 031405.	1.5	18
118	Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions. Science and Technology of Advanced Materials, 2009, 10, 014604.	6.1	35
119	Formation of Crystalline-Oriented Titania Thin Films on ITO Glass Electrodes by EPD in a Strong Magnetic Field. Key Engineering Materials, 2009, 412, 143-148.	0.4	2
120	Fabrication of Multi-Layered Thermoelectric Thick Films and their Thermoelectric Performance. Key Engineering Materials, 2009, 412, 291-296.	0.4	0
121	Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field. Journal of the European Ceramic Society, 2009, 29, 2627-2633.	5.7	33
122	Texture development in 3mol% yttria-stabilized tetragonal zirconia. Materials Research Bulletin, 2009, 44, 1802-1805.	5.2	15
123	Control of Texture in Diamagnetic Ceramics by Using a Strong Magnetic Field. Materia Japan, 2009, 48, 321-326.	0.1	0
124	Effect of bead-milling treatment on the dispersion of tetragonal zirconia nanopowder and improvements of two-step sintering. Journal of the Ceramic Society of Japan, 2009, 117, 470-474.	1.1	13
125	Fabrication of GDC/LSGM/GDC tri-layers on polypyrrole-coated NiO-YSZ by electrophoretic deposition for anode-supported SOFC. Journal of the Ceramic Society of Japan, 2009, 117, 1246-1248.	1.1	20
126	Anelastic behavior of 8Y-FSZ/Al2O3 composite. Journal of Materials Science, 2008, 43, 6834-6839.	3.7	0

#	Article	IF	CITATIONS
127	Texturing behavior in sintered reaction-bonded silicon nitride via strong magnetic field alignment. Journal of the European Ceramic Society, 2008, 28, 929-934.	5.7	12
128	Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering. Journal of the European Ceramic Society, 2008, 28, 935-942.	5.7	55
129	Texture development of hydroxyapatite ceramics by colloidal processing in a high magnetic field followed by sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 27-33.	5.6	27
130	Highly Texturing Î ² -Sialon Via Strong Magnetic Field Alignment. Journal of the American Ceramic Society, 2008, 91, 620-623.	3.8	15
131	Conductive Polymer Coating on Nonconductive Ceramic Substrates for Use in the Electrophoretic Deposition Process. Journal of the American Ceramic Society, 2008, 91, 1674-1677.	3.8	26
132	Texturing of Si ₃ N ₄ Ceramics via Strong Magnetic Field Alignment. Key Engineering Materials, 2008, 368-372, 871-874.	0.4	6
133	Preparation and Properties of Al ₂ O ₃ -Mullite-SiC Nano-Composite by Slip Casting in a High Magnetic Field and Reaction Sintering. Key Engineering Materials, 2007, 336-338, 1133-1136.	0.4	1
134	Thermoelectric Properties and Magnetic Anisotropies of Magnetically Grain-Oriented Sr- or Bi-doped Ca3Co4O9 Thick Films. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
135	Improvement of Thermoelectric Properties of p- and n-types Oxide Thick Films Fabricated by Electrophoretic Deposition. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
136	Hydrogen Storage Properties of Nb-Zr-Fe Alloys Disintegrated by Hydrogen Gas. Materials Science Forum, 2007, 534-536, 73-76.	0.3	0
137	Direct Shaping of Alumina Ceramics by Electrophoretic Deposition Using Conductive Polymer-Coated Ceramic Substrates. Advanced Materials Research, 2007, 29-30, 227-230.	0.3	2
138	Fabrication and Some Properties of Textured Ceramics by Colloidal Processing in High Magnetic Field. Key Engineering Materials, 2007, 352, 101-106.	0.4	3
139	Orientation Control in Multilayered Alumina Prepared Using Electrophoretic Deposition in a Strong Magnetic Field. Advanced Materials Research, 2007, 29-30, 223-226.	0.3	1
140	Effect of Milling Treatment on Texture Development of Hydroxyapatite Ceramics by Slip Casting in High Magnetic Field. Materials Transactions, 2007, 48, 2861-2866.	1.2	21
141	Fabrication of Textured α-SiC Using Colloidal Processing and a Strong Magnetic Field. Materials Transactions, 2007, 48, 2883-2887.	1.2	20
142	Texturing CaALPHASialon Via Strong Magnetic Field Alignment. Journal of the Ceramic Society of Japan, 2007, 115, 701-705.	1.1	6
143	High-strain-rate superplasticity in oxide ceramics. Science and Technology of Advanced Materials, 2007, 8, 578-587.	6.1	41
144	Effect of Polyethylenimine on Hydrolysis and Dispersion Properties of Aqueous Si3N4Suspensions. Journal of the American Ceramic Society, 2007, 90, 797-804.	3.8	46

#	Article	IF	CITATIONS
145	Layer Structure of Textured CaBi4Ti4O15Ceramics Fabricated by Slip Casting in High Magnetic Field. Journal of the American Ceramic Society, 2007, 90, 1463-1466.	3.8	18
146	Electrophoretic Deposition of Alumina on Conductive Polymer-Coated Ceramic Substrates. Journal of the Ceramic Society of Japan, 2006, 114, 55-58.	1.3	19
147	Texture Development in Si3N4 Ceramics by Magnetic Field Alignment during Slip Casting. Journal of the Ceramic Society of Japan, 2006, 114, 979-987.	1.3	40
148	Texture Development in Alumina Composites by Slip Casting in a Strong Magnetic Field. Journal of the Ceramic Society of Japan, 2006, 114, 59-62.	1.3	22
149	Control of texture in alumina by colloidal processing in a strong magnetic field. Science and Technology of Advanced Materials, 2006, 7, 356-364.	6.1	106
150	Microstructural Design for Attaining High-Strain-Rate Superplasticity in Oxide Materials. Advances in Science and Technology, 2006, 45, 923.	0.2	1
151	Design of Alumina/Alumina Laminate Composites with Crystalline-Orientated Layers Produced by Electrophoretic Deposition under a High Magnetic Field. Key Engineering Materials, 2006, 314, 25-32.	0.4	0
152	Highly controlled orientation of CaBi4Ti4O15 using a strong magnetic field. Applied Physics Letters, 2006, 89, 132902.	3.3	20
153	Control of the Texture in Feeble Magnetic Ceramics Using Colloidal Processing in a Strong Magnetic Field. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53, 479-487.	0.2	1
154	CONTROL OF PARTICLE ORIENTATION OF HYDROXYAPATITE UNDER A HIGH MAGNETIC FIELD. Phosphorus Research Bulletin, 2005, 19, 256-261.	0.6	0
155	Textured Development of Feeble Magnetic Ceramics by Colloidal Processing Under High Magnetic Field. Journal of the Ceramic Society of Japan, 2005, 113, 26-36.	1.3	223
156	Densification and Superplasticity of Hydroxyapatite Ceramics. Journal of the Ceramic Society of Japan, 2005, 113, 669-673.	1.3	26
157	Preparation of oriented bulk 5wt% Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scripta Materialia, 2005, 52, 583-586.	5.2	65
158	Texture of Alumina by Neutron Diffraction and SEM-EBSD. Materials Science Forum, 2005, 495-497, 1395-1400.	0.3	12
159	Development of Thermoelectric Bi-Based Cobaltites with an Easy Axis of Magnetization Parallel to the C-Axis for Magnetic Alignment. Japanese Journal of Applied Physics, 2005, 44, L1263-L1266.	1.5	13
160	Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction. Chemistry of Materials, 2005, 17, 102-106.	6.7	22
161	New Processing of Textured Ceramics by Colloidal Processing Under High Magnetic Field. Key Engineering Materials, 2005, 280-283, 721-728.	0.4	5
162	The Crystal Orientation Taking Account of Gravity Force under High Magnetic Field. ISIJ International, 2005, 45, 997-1000.	1.4	13

Тонки S Suzuki

#	Article	IF	CITATIONS
163	Looking for Positive Mixing Volume in Polyamide/Acrylic Rubber Blends with Use of Positron Annihilation Lifetime Spectroscopy and Other Methods. Materials Science Forum, 2004, 445-446, 277-279.	0.3	2
164	High-Strain Rate Superplastic Zirconia Systems. Key Engineering Materials, 2004, 264-268, 285-288.	0.4	0
165	Control of Texture in Al ₂ O ₃ Composites by Slip Casting in a Strong Magnetic Field Followed by Heating. Key Engineering Materials, 2004, 264-268, 245-248.	0.4	2
166	Strain Softening and Hardening during Superplasticâ€Like Flow in a Fineâ€Grained MgAl ₂ O ₄ Spinel Polycrystal. Journal of the American Ceramic Society, 2004, 87, 1102-1109.	3.8	15
167	Fabrication of oriented ?-alumina from porous bodies by slip casting in a high magnetic field. Solid State Ionics, 2004, 172, 341-347.	2.7	32
168	Low-Temperature and High-Strain Rate Superplastic Zirconia. Advanced Engineering Materials, 2003, 5, 130-133.	3.5	17
169	Control of Texture in Electroceramics by Slip-Casting in a High Magnetic Field. Key Engineering Materials, 2003, 248, 191-194.	0.4	9
170	Electrophoretic deposition of $\hat{l}\pm$ -alumina particles in a strong magnetic field. Journal of Materials Research, 2003, 18, 254-256.	2.6	29
171	Alignment of Titania Whisker by Colloidal Filtration in a High Magnetic Field. Japanese Journal of Applied Physics, 2002, 41, L1416-L1418.	1.5	58
172	Fabrication of Textured Titania by Slip Casting in a High Magnetic Field Followed by Heating. Japanese Journal of Applied Physics, 2002, 41, L1272-L1274.	1.5	75
173	Fabrication of Tailored Alumina-Based Ceramics Through Colloidal Processing. Key Engineering Materials, 2002, 224-226, 619-622.	0.4	3
174	Microstructure and Superplasticity in Various Zirconia-Dispersed Aluminas Journal of the Ceramic Society of Japan, 2002, 110, 927-930.	1.3	1
175	Control of Texture in ZnO by Slip Casting in a Strong Magnetic Field and Heating. Chemistry Letters, 2002, 31, 1204-1205.	1.3	65
176	Preferred Orientation of the Texture in the SiC Whisker-Dispersed Al2O3 Ceramics by Slip Casting in a High Magnetic Field Journal of the Ceramic Society of Japan, 2001, 109, 886-890.	1.3	40
177	Sintering and Ionic Conductivity of CuO-Doped Tetragonal ZrO2 Prepared by Novel Colloidal Processing Journal of the Ceramic Society of Japan, 2001, 109, 1004-1009.	1.3	6
178	Cavity Formation and Growth in a Superplastic Alumina Containing Zirconia Particles. Materials Science Forum, 2001, 357-359, 193-198.	0.3	5
179	Fabrication of Textured Alumina through Slip Casting in a High Magnetic Field and Heating. Key Engineering Materials, 2001, 206-213, 349-352.	0.4	3
180	Colloidal Processing and Superplastic Properties of Fine-Grained Zirconia-Based Ceramics. Key Engineering Materials, 2001, 206-213, 645-648.	0.4	6

Тон<mark>ки S Suzuk</mark>i

#	Article	IF	CITATIONS
181	Effect of Ultrasonication on the Microstructure and Tensile Elongation of Zirconiaâ€Dispersed Alumina Ceramics Prepared by Colloidal Processing. Journal of the American Ceramic Society, 2001, 84, 2132-2134.	3.8	67
182	Cavitation Failure in a Superplastic Alumina with Zirconia-Particle Dispersion. Key Engineering Materials, 2000, 171-174, 763-770.	0.4	3
183	Cavity Damage Accumulation in Alumina Doped with Zirconia or Magnesia. Materials Science Forum, 1999, 304-306, 431-436.	0.3	8
184	Superplastic Tensile Ductility in a Zirconia-Dispersed Alumina Produced by Colloidal Processing. Materials Science Forum, 1999, 304-306, 489-494.	0.3	3
185	Effect of Ultrasonication on Colloidal Dispersion of Al ₂ O ₃ and ZrO ₂ Powders in pH Controlled Suspension. Materials Transactions, JIM, 1998, 39, 689-692.	0.9	25
186	High-Temperature Deformation of TiAl/Ti ₂ AlC Composites Produced by Reaction Milling. Materials Science Forum, 1996, 233-234, 295-302.	0.3	1
187	Synthesis of TiAl-Al ₂ Ti ₄ C ₂ Composite by Reaction Milling. Materials Science Forum, 1995, 179-181, 189-194.	0.3	8
188	Fabrication of Highly Microstructure Controlled Ceramics by Novel Colloidal Processing. Key Engineering Materials, 0, 336-338, 2372-2377.	0.4	0
189	Pulsed-DC Electrophoretic Deposition (EPD) of Aqueous Alumina Suspension for Controlling Bubble Incorporation and Deposit Microstructure. Key Engineering Materials, 0, 412, 39-44.	0.4	10
190	Surface Modification of SiC Powder for Use in Electrophoretic Deposition. Key Engineering Materials, 0, 412, 287-290.	0.4	3
191	Textured PbTiO ₃ Based Ceramics Fabricated by Slip Casting in a High Magnetic Field. Key Engineering Materials, 0, 421-422, 395-398.	0.4	0
192	Control of Residual Stress in Multilayered Alumina Composites Prepared Using EPD in a Strong Magnetic Field. Key Engineering Materials, 0, 412, 233-236.	0.4	1
193	Preparation of Barium Titanate Grain-Oriented Ceramics and their Piezoelectric Properties. Key Engineering Materials, 0, 445, 3-6.	0.4	1
194	Textured Ti ₃ SiC ₂ by EPD in a Strong Magnetic Field. Key Engineering Materials, 0, 507, 15-19.	0.4	2
195	Preparation of Barium Titanate Nanoperticles with Necking Structure/Polymer Complex and their Dielectric Properties. Key Engineering Materials, 0, 582, 23-26.	0.4	0
196	Microstructure Control of Potassium Niobate Porous Ceramics and their Sensor Properties. Key Engineering Materials, 0, 566, 241-244.	0.4	2
197	Preparation of Ceramics/Polymer Film Capacitor Using Barium Titanate Nanoparticles with High Dielectric Property and their Dielectric Property. Key Engineering Materials, 0, 566, 54-58.	0.4	0
198	Preparation of Textured Li _{1+x-y} Nb _{1-x-3y} Ti _{x+4y} O _{3<td>subo></td><td>4</td>}	subo>	4

Solid Solution in a High Magnetic Field. Materials Science Forum, 0, 783-786, 2480-2484.

Тонки S Suzuki

#	Article	IF	CITATIONS
199	Surface Modification of Complex Oxide Powder with Polyelectrolyte Layers Improving EPD Characteristics. Key Engineering Materials, 0, 654, 255-260.	0.4	0
200	Fabrication of c-Axis-Oriented Zeolite L Seed Layer on Porous Zirconia Substrate by Electrophoretic Deposition in Strong Magnetic Field. Key Engineering Materials, 0, 654, 274-279.	0.4	0
201	Tri-axial Grain Orientation of Y ₂ Ba ₄ Cu ₇ O _{<i>y</i>} Achieved by the Magneto-science Method. Applied Physics Express, 0, 1, 111701.	2.4	46
202	Consolidation and highâ€ŧemperature strength of monolithic lanthanum hexaboride. Journal of the American Ceramic Society, 0, , .	3.8	1