Vincent H J Van Der Velden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2134811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow cytometric analysis of myelodysplasia: Preâ€enalytical and technical issues—Recommendations from the European <scp>LeukemiaNet</scp> . Cytometry Part B - Clinical Cytometry, 2023, 104, 15-26.	1.5	16
2	Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European <scp>LeukemiaNet</scp> International <scp>MDSâ€Flow</scp> Cytometry Working Group. Cytometry Part B - Clinical Cytometry, 2023, 104, 77-86.	1.5	18
3	Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica, 2023, 108, 717-731.	3.5	6
4	VS38c and CD38-Multiepitope Antibodies Provide Highly Comparable Minimal Residual Disease Data in Patients With Multiple Myeloma. American Journal of Clinical Pathology, 2022, 157, 494-497.	0.7	8
5	The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia, 2022, 36, 687-700.	7.2	10
6	Impact of Pre-Analytical and Analytical Variables Associated with Sample Preparation on Flow Cytometric Stainings Obtained with EuroFlow Panels. Cancers, 2022, 14, 473.	3.7	3
7	Longitudinal minimal residual disease assessment in multiple myeloma patients in complete remission – results from the NMSG flow-MRD substudy within the EMN02/HO95 MM trial. BMC Cancer, 2022, 22, 147.	2.6	1
8	Clofarabine added to intensive treatment in adult patients with newly diagnosed ALL: the HOVON-100 trial. Blood Advances, 2022, 6, 1115-1125.	5.2	5
9	A series of case studies illustrating the role of flow cytometry in the diagnostic workâ€up of myelodysplastic syndromes. Cytometry Part B - Clinical Cytometry, 2022, , .	1.5	5
10	Immunophenotypic Analysis of Acute Megakaryoblastic Leukemia: A EuroFlow Study. Cancers, 2022, 14, 1583.	3.7	11
11	Identification of High-Risk Multiple Myeloma With a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 2022, 40, 3132-3150.	1.6	13
12	Flow cytometric minimal residual disease assessment in Bâ€cell precursor acute lymphoblastic leukaemia patients treated with CD19â€ŧargeted therapies — a EuroFlow study. British Journal of Haematology, 2022, 197, 76-81.	2.5	8
13	Quality Assessment of a Large Multi-Center Flow Cytometric Dataset of Acute Myeloid Leukemia Patients—A EuroFlow Study. Cancers, 2022, 14, 2011.	3.7	3
14	Machine Learning Based Analysis of Relations between Antigen Expression and Genetic Aberrations in Childhood B-Cell Precursor Acute Lymphoblastic Leukaemia. Journal of Clinical Medicine, 2022, 11, 2281.	2.4	7
15	Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial. Leukemia, 2022, 36, 1516-1524.	7.2	21
16	Dysregulation of Small Nucleolar RNAs in B-Cell Malignancies. Biomedicines, 2022, 10, 1229.	3.2	2
17	Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome. Cancers, 2022, 14, 3088.	3.7	3
18	Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites, 2022, 12, 618.	2.9	16

#	Article	IF	CITATIONS
19	Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers. Metabolites, 2022, 12, 619.	2.9	14
20	Standardised immunophenotypic analysis of myeloperoxidase in acute leukaemia. British Journal of Haematology, 2021, 193, 922-927.	2.5	6
21	Automated identification of leukocyte subsets improves standardization of database-guided expert-supervised diagnostic orientation in acute leukemia: a EuroFlow study. Modern Pathology, 2021, 34, 59-69.	5.5	15
22	A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood, 2021, 137, 1582-1590.	1.4	48
23	Flowcytometric evaluation of cerebrospinal fluid in childhood ALL identifies CNS involvement better then conventional cytomorphology. Leukemia, 2021, 35, 1773-1776.	7.2	9
24	Sensitive GATA1 mutation screening reliably identifies neonates with Down syndrome at risk for myeloid leukemia. Leukemia, 2021, 35, 2403-2406.	7.2	8
25	Potential and pitfalls of whole transcriptome-based immunogenetic marker identification in acute lymphoblastic leukemia; a EuroMRD and EuroClonality-NGS Working Group study. Leukemia, 2021, 35, 924-928.	7.2	3
26	Clinical Implications of Minimal Residual Disease Detection in Infants With <i>KMT2A</i> -Rearranged Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. Journal of Clinical Oncology, 2021, 39, 652-662.	1.6	41
27	PML-controlled responses in severe congenital neutropenia with <i>ELANE</i> -misfolding mutations. Blood Advances, 2021, 5, 775-786.	5.2	7
28	B-Cell Regeneration Profile and Minimal Residual Disease Status in Bone Marrow of Treated Multiple Myeloma Patients. Cancers, 2021, 13, 1704.	3.7	6
29	Antibodies Against Angiotensin II Receptor Type 1 and Endothelin A Receptor Are Associated With an Unfavorable COVID19 Disease Course. Frontiers in Immunology, 2021, 12, 684142.	4.8	25
30	Minimal residual disease assessment by multiparameter flow cytometry in transplant-eligible myeloma in the EMN02/HOVON 95 MM trial. Blood Cancer Journal, 2021, 11, 106.	6.2	31
31	Minimal residual disease (MRD) detection in acute lymphoblastic leukaemia based on fusion genes and genomic deletions: towards MRD for all. British Journal of Haematology, 2021, 194, 888-892.	2.5	4
32	Consolidation and Maintenance in Newly Diagnosed Multiple Myeloma. Journal of Clinical Oncology, 2021, 39, 3613-3622.	1.6	25
33	Minimal residual disease, long-term outcome, and IKZF1 deletions in children and adolescents with Down syndrome and acute lymphocytic leukaemia: a matched cohort study. Lancet Haematology,the, 2021, 8, e700-e710.	4.6	10
34	Standardization of flow cytometric minimal residual disease assessment in international clinical trials. A feasibility study from the European Myeloma Network. Haematologica, 2021, 106, 1496-1499.	3.5	9
35	Efficacy and toxicity of highâ€ r isk therapy of the Dutch Childhood Oncology Group in childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, , e29387. 	1.5	3
36	Minimal Residual Disease and Outcome Characteristics in Infant KMT2A-Germline Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. Blood, 2021, 138, 2383-2383.	1.4	0

#	Article	IF	CITATIONS
37	Impact of Maintenance Arm on Prognostic Value of MRD after Induction Treatment in MCL R2 Elderly Trial , a Mantle Cell Lymphoma Network Study. Blood, 2021, 138, 40-40.	1.4	2
38	Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study. Blood Advances, 2021, , .	5.2	9
39	NGS-Based MRD Quantitation: An Alternative to qPCR Validated on a Large Consecutive Cohort of Children with ALL. Blood, 2021, 138, 1314-1314.	1.4	2
40	A Phase I/II Study of Bosutinib in Pediatric Patients with Resistant/Intolerant or Newly Diagnosed Philadelphia Chromosome-Positive Chronic Myeloid Leukemia, Study ITCC (Innovative Therapies for) Tj ETQq0 C AAMI 1921: Results from the Phase I Trial in Resistant/Intolerant Patients, Blood, 2021, 138, 2558-2558) 0 rgBT /0 1.4	verlock 10 Tf
41	Daratumumab (DARA) with Bortezomib, Thalidomide, and Dexamethasone (VTd) in Transplant-Eligible Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM): Analysis of Minimal Residual Disease (MRD) Negativity in Cassiopeia Part 1 and Part 2. Blood, 2021, 138, 82-82.	1.4	10
42	Mediating effect of soluble B-cell activation immune markers on the association between anthropometric and lifestyle factors and lymphoma development. Scientific Reports, 2020, 10, 13814.	3.3	4
43	Robust FCS Parsing: Exploring 211,359 Public Files. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1180-1186.	1.5	1
44	41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. , 2020, 8, e000845.		37
45	Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a multicentre, randomised, open-label, phase 3 study, Lancet Haematology,the, 2020, 7, e456-e468.	4.6	244
46	Applicability and reproducibility of acute myeloid leukaemia stem cell assessment in a multiâ€centre setting. British Journal of Haematology, 2020, 190, 891-900.	2.5	11
47	Clinical Implications of Minimal Residual Disease Detection in Infants with <i>KMT2A</i> -Rearranged Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. Blood, 2020, 136, 41-42.	1.4	1
48	A Phase II Study of Single-Agent Inotuzumab Ozogamicin in Pediatric CD22-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of the ITCC-059 Study. Blood, 2020, 136, 8-9.	1.4	10
49	Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto II, Navios and BD FACS Lyric instruments. Journal of Immunological Methods, 2019, 475, 112680.	1.4	24
50	Lossless Compression of Cytometric Data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1108-1112.	1.5	4
51	EuroFlow Lymphoid Screening Tube (LST) data base for automated identification of blood lymphocyte subsets. Journal of Immunological Methods, 2019, 475, 112662.	1.4	35
52	Combined cellular and soluble mediator analysis for improved diagnosis of vitreoretinal lymphoma. Acta Ophthalmologica, 2019, 97, 626-632.	1.1	16
53	Fluorochrome choices for multi-color flow cytometry. Journal of Immunological Methods, 2019, 475, 112618.	1.4	43
54	Flow cytometry diagnosis in myelodysplastic syndrome: Current practice in Latin America and comparison with other regions of the world. Leukemia Research, 2019, 79, 69-74.	0.8	3

#	Article	IF	CITATIONS
55	MRD Detection in B-Cell Non-Hodgkin Lymphomas Using Ig Gene Rearrangements and Chromosomal Translocations as Targets for Real-Time Quantitative PCR. Methods in Molecular Biology, 2019, 1956, 199-228.	0.9	22
56	More precisely defining risk peri-HCT in pediatric ALL: pre- vs post-MRD measures, serial positivity, and risk modeling. Blood Advances, 2019, 3, 3393-3405.	5.2	81
57	Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: Is multicentric MRD assessment feasible?. Leukemia Research, 2019, 76, 39-47.	0.8	23
58	CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry Part B - Clinical Cytometry, 2019, 96, 134-142.	1.5	82
59	Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection. Leukemia Research, 2019, 76, 98-104.	0.8	25
60	CD34+CD38â^' leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia, 2019, 33, 1102-1112.	7.2	130
61	How to make usage of the standardized EuroFlow 8-color protocols possible for instruments of different manufacturers. Journal of Immunological Methods, 2019, 475, 112388.	1.4	23
62	Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. Journal of Immunological Methods, 2019, 475, 112429.	1.4	40
63	Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples. Journal of Immunological Methods, 2019, 475, 112287.	1.4	29
64	Lot-to-lot stability of antibody reagents for flow cytometry. Journal of Immunological Methods, 2019, 475, 112294.	1.4	20
65	A Phase I Study of Single-Agent Inotuzumab Ozogamicin in Pediatric CD22-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia: Preliminary Results of the ITCC-059 Study. Blood, 2019, 134, 2629-2629.	1.4	7
66	Altered Immunophenotypes on Leukemic and/or Monocytic Cells from Acute Myeloid Leukemia Highly Predict for Nucleophosmin Gene Mutation. Blood, 2019, 134, 2687-2687.	1.4	0
67	Minimal Residual Disease and IKZF1 As Predictors of Relapse, and Increased Treatment Related Mortality in Down Syndrome Acute Lymphoblastic Leukemia: A Unique and Large International Matched Case-Control Study. Blood, 2019, 134, 827-827.	1.4	0
68	Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy. Modern Pathology, 2018, 31, 1318-1331.	5.5	9
69	<scp>CD</scp> 38 expression in paediatric leukaemia and lymphoma: implications for antibody targeted therapy. British Journal of Haematology, 2018, 180, 292-296.	2.5	18
70	Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients. British Journal of Haematology, 2018, 183, 512-516.	2.5	27
71	Usability of femoral head bone marrow to verify reference ranges for the assessment of myelodysplasia by flow cytometry. International Journal of Laboratory Hematology, 2018, 40, 726-733.	1.3	2
72	Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD Prevention 2007 study. Blood Advances, 2018, 2, 1532-1540.	5.2	36

#	Article	IF	CITATIONS
73	Flow cytometry shows added value in diagnosing lymphoma in brain biopsies. Cytometry Part B - Clinical Cytometry, 2018, 94, 928-934.	1.5	9
74	Introduction to the diagnosis and classification of monocyticâ€lineage leukemias by flow cytometry. Cytometry Part B - Clinical Cytometry, 2017, 92, 218-227.	1.5	44
75	Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes. Haematologica, 2017, 102, 320-326.	3.5	53
76	Detailed immunophenotyping of Bâ€cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection. British Journal of Haematology, 2017, 178, 257-266.	2.5	37
77	Understanding the reconstitution of the Bâ€cell compartment in bone marrow and blood after treatment for Bâ€cell precursor acute lymphoblastic leukaemia. British Journal of Haematology, 2017, 178, 267-278.	2.5	8
78	Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood, 2017, 129, 347-357.	1.4	323
79	Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group. Haematologica, 2017, 102, 308-319.	3.5	74
80	Antigen receptor sequencing of paired bone marrow samples shows homogeneous distribution of acute lymphoblastic leukemia subclones. Haematologica, 2017, 102, 1869-1877.	3.5	16
81	Minimal residual disease (MRD) monitoring by multiparameter flow cytometry (MFC) in newly diagnosed transplant eligible multiple myeloma (MM) patients: Results from the EMN02/HO95 phase 3 trial Journal of Clinical Oncology, 2017, 35, 8011-8011.	1.6	15
82	Tyrosine kinase fusion genes in pediatric <i>BCR-ABL1</i> -like acute lymphoblastic leukemia. Oncotarget, 2017, 8, 4618-4628.	1.8	66
83	Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica, 2016, 101, 707-716.	3.5	51
84	Fifteen years of external quality assessment in leukemia/lymphoma immunophenotyping in <scp>T</scp> he <scp>N</scp> etherlands and <scp>B</scp> elgium: A way forward. Cytometry Part B - Clinical Cytometry, 2016, 90, 267-278.	1.5	8
85	Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Scientific Reports, 2016, 6, 33924.	3.3	20
86	Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. Journal of Clinical Oncology, 2016, 34, 2591-2601.	1.6	287
87	New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric Bâ€cell precursor acute lymphoblastic leukaemia. British Journal of Haematology, 2016, 172, 769-781.	2.5	44
88	NGS-Based Minimal Residual Disease (MRD) after Stem Cell Transplantation (SCT) Is More Specific for Relapse Prediction Than qPCR and Suggests the Possibility of False-Positive qPCR Results. Blood, 2016, 128, 3494-3494.	1.4	1
89	Monitoring of Minimal Residual Disease before and after Allogeneic Stem Cell Transplantation Childhood ALL - a Retrospective Assessment on Behalf of the PDWP of the EBMT, the COG, PBMTC, the I-BFM and the Westhafen-Intercontinental-Group. Blood, 2016, 128, 985-985.	1.4	2
90	Flowcytometric Minimal Residual Disease Assessment in the EMN-02/HOVON-95 MM Trial: Used Methods and a Comparison of Their Sensitivity. Blood, 2016, 128, 2072-2072.	1.4	1

VINCENT H J VAN DER VELDEN

#	Article	IF	CITATIONS
91	Euroflow-Based Immunophenotypic Characterization of CD34+ Cell Compartment in Juvenile Myelomonocytic Leukemia (JMML): A New Tool for Differential Diagnosis. Blood, 2016, 128, 3127-3127.	1.4	0
92	Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood, 2015, 125, 3996-4009.	1.4	410
93	Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica, 2015, 100, 315-323.	3.5	38
94	Quality assessment program for <scp>E</scp> uro <scp>F</scp> low protocols: Summary results of fourâ€year (2010–2013) quality assurance rounds. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 145-156.	1.5	144
95	Effect of a Stable Angiotensinâ€(1–7) Analogue on Progenitor Cell Recruitment and Cardiovascular Function Post Myocardial Infarction. Journal of the American Heart Association, 2015, 4, .	3.7	5
96	The Relevance of Stem Cell Load at Diagnosis for the Development of Relapse in Pediatric Acute Myeloid Leukemia. Blood, 2015, 126, 2584-2584.	1.4	1
97	The Integrated Immunological Signature of Refractory Cytopenia of Childhood (RCC). Blood, 2015, 126, 1657-1657.	1.4	Ο
98	B-cell prolymphocytic leukemia: a specific subgroup of mantle cell lymphoma. Blood, 2014, 124, 412-419.	1.4	48
99	Minimal residual disease diagnostics in acute lymphoblastic leukaemia: impact of primer characteristics and size of junctional regions. British Journal of Haematology, 2014, 164, 451-453.	2.5	9
100	A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia. Cell, 2014, 157, 369-381.	28.9	571
101	Recovery of the Normal B-Cell Compartment in Children Treated for B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3792-3792.	1.4	0
102	Extensive Molecular Analysis Strongly Improves the Distinction Between AML and ALL in Adult Acute Leukemias of Ambiguous Lineage. Blood, 2014, 124, 1067-1067.	1.4	0
103	Bone Marrow Immunophenotyping By Flow Cytometry in Refractory Cytopenia of Childhood. Blood, 2014, 124, 1916-1916.	1.4	0
104	No significant prognostic value of normal precursor <scp>B</scp> ell regeneration in paediatric acute myeloid leukaemia after induction treatment. British Journal of Haematology, 2013, 161, 861-864.	2.5	6
105	Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an International Consortium and the European LeukemiaNet Working Group. Leukemia and Lymphoma, 2013, 54, 472-475.	1.3	66
106	High Prognostic Impact of Flow Cytometric Minimal Residual Disease Detection in Acute Myeloid Leukemia: Data From the HOVON/SAKK AML 42A Study. Journal of Clinical Oncology, 2013, 31, 3889-3897.	1.6	392
107	Leukemia surfaceome analysis reveals new disease-associated features. Blood, 2013, 121, e149-e159.	1.4	63
108	Immunophenotyping Versus Morphological Evaluation Of Fresh and Stabilized Cerebrospinal Fluid As Diagnostic Tool For CNS Involvement In Childhood Acute Lymphoblastic Leukemia. Blood, 2013, 122, 4950-4950.	1.4	0

#	Article	IF	CITATIONS
109	Implementation of flow cytometry in the diagnostic work-up of myelodysplastic syndromes in a multicenter approach: Report from the Dutch Working Party on Flow Cytometry in MDS. Leukemia Research, 2012, 36, 422-430.	0.8	29
110	Proteomic Exploration of the Cell Surface Landscape Reveals New Leukemia Associated Features Blood, 2012, 120, 2506-2506.	1.4	0
111	Telomere Length and Telomerase Complex Mutations in Pediatric Acute Myeloid Leukemia. Blood, 2012, 120, 1482-1482.	1.4	0
112	Leukemia Cells with a BCR-ABL1-Like signature and/or IKZF1 deletions, but Not High CRLF2 Expression, Are Predictive of an Unfavorable Prognosis in Childhood B Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2012, 120, 880-880.	1.4	11
113	Pediatric Acute Myeloid Leukemia with t(8;16)(p11;p13): A Distinct Clinical and Biological Entity. Results of a Collaborative Study by the International Berlin-Frankfurt-Mul^nster AML Study Group Blood, 2012, 120, 2516-2516.	1.4	0
114	Longâ€ŧerm survival after significant treatment reduction in a patient with CBF–AML. Pediatric Blood and Cancer, 2011, 56, 325-326.	1.5	1
115	Late Recurrence of Childhood T-Cell Acute Lymphoblastic Leukemia Frequently Represents a Second Leukemia Rather Than a Relapse: First Evidence for Genetic Predisposition. Journal of Clinical Oncology, 2011, 29, 1643-1649.	1.6	62
116	Human Telomere Disease Due to Disruption of the CCAAT Box of the TERC Promoter. Blood, 2011, 118, 2405-2405.	1.4	11
117	Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay. Best Practice and Research in Clinical Haematology, 2010, 23, 333-345.	1.7	23
118	MRD Detection in Acute Lymphoblastic Leukemia Patients Using Ig/TCR Gene Rearrangements as Targets for Real-Time Quantitative PCR. Methods in Molecular Biology, 2009, 538, 115-150.	0.9	83
119	Identification of distinct prognostic subgroups in low- and intermediate-1–risk myelodysplastic syndromes by flow cytometry. Blood, 2008, 111, 1067-1077.	1.4	205
120	Dasatinib in Children and Adolescents with Relapsed or Refractory Leukemia: Interim Results of the CA180-018 Phase I Study from the ITCC Consortium Blood, 2008, 112, 3241-3241.	1.4	9
121	CD33 expression and P-glycoprotein–mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood, 2007, 109, 4168-4170.	1.4	176
122	Comparative Analysis of Gene Expression Profiles between Diagnosis and Relapse of Childhood Acute Lymphoblastic Leukemia Blood, 2007, 110, 2809-2809.	1.4	0
123	Detection of Genomic Lesions in Childhood Precursor-B Cell ALL in Diagnosis and Relapse Samples Using High Resolution Genomic Profiling Blood, 2007, 110, 995-995.	1.4	1
124	Late Relapses of Childhood T-ALL Are Frequently Second T-ALL Blood, 2007, 110, 1435-1435.	1.4	0
125	Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 2006, 133, 382-388.	2.5	20
126	Relationship between CD33 Expression, P-Glycoprotein-Mediated Drug Efflux, and Clinical Outcome in Patients Treated in Phase II Trials with Gemtuzumab Ozogamicin Monotherapy Blood, 2006, 108, 2324-2324.	1.4	3

#	Article	IF	CITATIONS
127	Cytotoxicity of Campath-1H for acute lymphoblastic leukemia cells carrying the t(12;21) translocation. Haematologica, 2006, 91, 291A.	3.5	1
128	Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica, 2006, 91, 679-82.	3.5	23
129	Standardization of WT1 mRNA Quantification for Minimal Residual Disease (MRD) Monitoring in Acute Leukemia Patients: A European LeukemiaNet Concerted Action Blood, 2005, 106, 3295-3295.	1.4	2
130	Immunoglobulin Light Chain Gene Rearrangements in Childhood Precursor-B-ALL: Immunobiological Characteristics and Applicability for the Detection of Minimal Residual Disease Blood, 2005, 106, 1442-1442.	1.4	0
131	Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: Reference patterns for age-related changes and disease-induced shifts. Cytometry, 2004, 60B, 1-13.	1.8	266
132	Classification systems for acute and chronic leukaemias. Best Practice and Research in Clinical Haematology, 2003, 16, 561-582.	1.7	42
133	Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 2002, 16, 368-375.	7.2	58
134	Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia, 2002, 16, 928-936.	7.2	120
135	T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia, 2002, 16, 1372-1380.	7.2	107
136	Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia, 2002, 16, 1432-1436.	7.2	129
137	Low frequency of reverse transcription polymerase chain reaction-detectable chromosome aberrations in relapsed acute myeloid leukaemia: implications for detection of minimal residual disease. British Journal of Haematology, 2001, 113, 1076-1089.	2.5	5
138	CD13/aminopeptidase N involvement in dendritic cell maturation. Leukemia, 2001, 15, 190-191.	7.2	4
139	Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia, 2001, 15, 1485-1487.	7.2	91