Ulrich Strych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2134051/publications.pdf

Version: 2024-02-01

		136950	144013
86	3,914	32	57
papers	citations	h-index	g-index
100	100	100	6224
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate. Protein Expression and Purification, 2022, 190, 106003.	1.3	21
2	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	12.4	57
3	Mucosal Vaccination With Recombinant Tm-WAP49 Protein Induces Protective Humoral and Cellular Immunity Against Experimental Trichuriasis in AKR Mice. Frontiers in Immunology, 2022, 13, 800295.	4.8	4
4	Maintaining face mask use before and after achieving different COVID-19 vaccination coverage levels: a modelling study. Lancet Public Health, The, 2022, 7, e356-e365.	10.0	41
5	Vaxi-DL: A web-based deep learning server to identify potential vaccine candidates. Computers in Biology and Medicine, 2022, 145, 105401.	7.0	7
6	Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. Vaccine, 2022, 40, 3655-3663.	3.8	21
7	CspZ FH-Binding Sites as Epitopes Promote Antibody-Mediated Lyme Borreliae Clearance. Infection and Immunity, 2022, 90, .	2.2	3
8	Past, present, and future of Lyme disease vaccines: antigen engineering approaches and mechanistic insights. Expert Review of Vaccines, 2022, 21, 1405-1417.	4.4	1
9	A scalable and reproducible manufacturing process for Phlebotomus papatasi salivary protein PpSP15, a vaccine candidate for leishmaniasis. Protein Expression and Purification, 2021, 177, 105750.	1.3	4
10	Correlates and disparities of intention to vaccinate against COVID-19. Social Science and Medicine, 2021, 272, 113638.	3.8	334
11	Recombinant protein vaccines, a proven approach against coronavirus pandemics. Advanced Drug Delivery Reviews, 2021, 170, 71-82.	13.7	157
12	SARS‑CoV-2 RBD219-N1C1: A yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Human Vaccines and Immunotherapeutics, 2021, 17, 2356-2366.	3.3	64
13	The Benefits of Vaccinating With the First Available COVID-19 Coronavirus Vaccine. American Journal of Preventive Medicine, 2021, 60, 605-613.	3.0	28
14	Lives and Costs Saved by Expanding and Expediting Coronavirus Disease 2019 Vaccination. Journal of Infectious Diseases, 2021, 224, 938-948.	4.0	32
15	Process development and scale-up optimization of the SARS-CoV-2 receptor binding domain–based vaccine candidate, RBD219-N1C1. Applied Microbiology and Biotechnology, 2021, 105, 4153-4165.	3.6	37
16	Facing the challenges of multidrug-resistant <i>Acinetobacter baumannii</i> : progress and prospects in the vaccine development. Human Vaccines and Immunotherapeutics, 2021, 17, 3784-3794.	3.3	21
17	Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129893.	2.4	49
18	A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Science Immunology, 2021, 6, .	11.9	53

#	Article	IF	CITATIONS
19	Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Scientific Reports, 2021, 11, 17626.	3.3	42
20	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	12.4	4
21	The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrous ATCC BAA-870. BMC Genomics, 2020, 21, 3.	2.8	7
22	Yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine, 2020, 38, 7533-7541.	3.8	84
23	Coronavirus vaccine-associated lung immunopathology-what is the significance?. Microbes and Infection, 2020, 22, 403-404.	1.9	15
24	Vaccine Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the Sole Intervention. American Journal of Preventive Medicine, 2020, 59, 493-503.	3.0	259
25	COVID-19 vaccines: neutralizing antibodies and the alum advantage. Nature Reviews Immunology, 2020, 20, 399-400.	22.7	74
26	The potential economic value of a therapeutic Chagas disease vaccine for pregnant women to prevent congenital transmission. Vaccine, 2020, 38, 3261-3270.	3.8	7
27	Process Characterization and Biophysical Analysis for a Yeast-Expressed Phlebotomus papatasi Salivary Protein (PpSP15) asÂa Leishmania Vaccine Candidate. Journal of Pharmaceutical Sciences, 2020, 109, 1673-1680.	3.3	8
28	The SARS-CoV-2 Vaccine Pipeline: an Overview. Current Tropical Medicine Reports, 2020, 7, 61-64.	3.7	403
29	Protective immunity elicited by the nematode-conserved As37 recombinant protein against Ascaris suum infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008057.	3.0	25
30	Neglected Parasitic Infections and the Syndemic Anemia Vaccines for Africa., 2019, , 75-85.		2
31	Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines, 2019, 7, 131.	4.4	29
32	A method to probe protein structure from UV absorbance spectra. Analytical Biochemistry, 2019, 587, 113450.	2.4	37
33	Economic value of a therapeutic Chagas vaccine for indeterminate and Chagasic cardiomyopathy patients. Vaccine, 2019, 37, 3704-3714.	3.8	12
34	Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine, 2018, 36, 1853-1862.	3.8	62
35	Characterization and Stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a Candidate Antigen for a Therapeutic Vaccine Against Chagas Disease. Journal of Pharmaceutical Sciences, 2018, 107, 1468-1473.	3.3	23
36	Covalent vaccination with <i>Trypanosoma cruzi</i> Tc24 induces catalytic antibody production. Parasite Immunology, 2018, 40, e12585.	1.5	4

#	Article	IF	CITATIONS
37	Optimization of the Production Process and Characterization of the Yeast-Expressed SARS-CoV Recombinant Receptor-Binding Domain (RBD219-N1), a SARS Vaccine Candidate. Journal of Pharmaceutical Sciences, 2017, 106, 1961-1970.	3.3	95
38	A simple fluorescence-based assay for quantification of the Toll-Like Receptor agonist E6020 in vaccine formulations. Vaccine, 2017, 35, 1410-1416.	3.8	1
39	Mutations to Cysteine Residues in the <i>Trypanosoma cruzi</i> B-Cell Superantigen Tc24 Diminish Susceptibility to IgM-Mediated Hydrolysis. Journal of Parasitology, 2017, 103, 579-583.	0.7	3
40	Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Human Vaccines and Immunotherapeutics, 2017, 13, 621-633.	3.3	39
41	Yeast-expressed recombinant As16 protects mice against Ascaris suum infection through induction of a Th2-skewed immune response. PLoS Neglected Tropical Diseases, 2017, 11, e0005769.	3.0	30
42	The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasites and Vectors, 2016, 9, 518.	2.5	19
43	Flotation Immunoassay: Masking the Signal from Free Reporters in Sandwich Immunoassays. Scientific Reports, 2016, 6, 24297.	3.3	11
44	Advancing a vaccine to prevent hookworm disease and anemia. Vaccine, 2016, 34, 3001-3005.	3.8	36
45	Advancing a vaccine to prevent human schistosomiasis. Vaccine, 2016, 34, 2988-2991.	3.8	90
46	Human anthelminthic vaccines: Rationale and challenges. Vaccine, 2016, 34, 3549-3555.	3.8	49
47	Status of vaccine research and development of vaccines for Chagas disease. Vaccine, 2016, 34, 2996-3000.	3.8	56
48	Vaccine Development Against Middle East Respiratory Syndrome. Current Tropical Medicine Reports, 2016, 3, 80-86.	3.7	2
49	Status of vaccine research and development of vaccines for leishmaniasis. Vaccine, 2016, 34, 2992-2995.	3.8	176
50	Expression and purification of an engineered, yeast-expressedLeishmania donovaninucleoside hydrolase with immunogenic properties. Human Vaccines and Immunotherapeutics, 2016, 12, 1-14.	3.3	12
51	New Vaccines for the World's Poorest People. Annual Review of Medicine, 2016, 67, 405-417.	12.2	52
52	Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2891-2898.	8.0	21
53	Label-free monitoring of individual DNA hybridization using SERS. Proceedings of SPIE, 2015, , .	0.8	0
54	Neglected Tropical Diseases among the Association of Southeast Asian Nations (ASEAN): Overview and Update. PLoS Neglected Tropical Diseases, 2015, 9, e0003575.	3.0	97

#	Article	IF	CITATIONS
55	Enzymatic Synthesis of Magnetic Nanoparticles. International Journal of Molecular Sciences, 2015, 16, 7535-7550.	4.1	9
56	Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays. Analytical Chemistry, 2015, 87, 11660-11665.	6.5	35
57	Sensitive Detection of Norovirus Using Phage Nanoparticle Reporters in Lateral-Flow Assay. PLoS ONE, 2015, 10, e0126571.	2.5	37
58	Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale, 2014, 6, 8521-8526.	5.6	85
59	Investigation of the Essentiality of Glutamate Racemase in Mycobacterium smegmatis. Journal of Bacteriology, 2014, 196, 4239-4244.	2.2	15
60	Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnology Letters, 2014, 36, 1863-1868.	2.2	10
61	Purification and Characterization of Proteins. , 2014, , 731-742.		1
62	Functionalized viral nanoparticles as ultrasensitive reporters in lateral-flow assays. Analyst, The, 2013, 138, 5584.	3.5	29
63	Biophysical characterization of VEGF–aHt DNA aptamer interactions. International Journal of Biological Macromolecules, 2013, 57, 69-75.	7. 5	12
64	Detection and Typing of Viruses Using Broadly Sensitive Cocktail-PCR and Mass Spectrometric Cataloging. Journal of Molecular Diagnostics, 2012, 14, 402-407.	2.8	4
65	A peroxidase-active aptazyme as an isothermally amplifiable label in an aptazyme-linked oligonucleotide assay for low-picomolar IgE detection. Analyst, The, 2012, 137, 5710.	3.5	9
66	Rare target enrichment for ultrasensitive PCR detection using cot–rehybridization and duplex-specific nuclease. Analytical Biochemistry, 2012, 421, 81-85.	2.4	7
67	Recovery of Small DNA Fragments from Serum Using Compaction Precipitation. PLoS ONE, 2012, 7, e51863.	2.5	4
68	New Classes of Alanine Racemase Inhibitors Identified by High-Throughput Screening Show Antimicrobial Activity against Mycobacterium tuberculosis. PLoS ONE, 2011, 6, e20374.	2.5	38
69	The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiology, 2011, 11, 116.	3.3	30
70	DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnology, 2010, 10, 85.	3.3	27
71	Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. Journal of Molecular Recognition, 2009, 22, 154-161.	2.1	40
72	Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Structural Biology, 2009, 9, 53.	2.3	32

#	Article	IF	CITATIONS
73	The Alanine Racemase of <i>Mycobacterium smegmatis</i> Is Essential for Growth in the Absence of <scp>d</scp> -Alanine. Journal of Bacteriology, 2007, 189, 8381-8386.	2.2	50
74	Purification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae. BMC Microbiology, 2007, 7, 40.	3.3	21
75	The 1.9 Ã Crystal Structure of Alanine Racemase from Mycobacterium tuberculosis Contains a Conserved Entryway into the Active Site,. Biochemistry, 2005, 44, 1471-1481.	2.5	86
76	Crystal Structure at 1.45 Å Resolution of Alanine Racemase from a Pathogenic Bacterium, Pseudomonas aeruginosa, Contains Both Internal and External Aldimine Forms,. Biochemistry, 2003, 42, 14752-14761.	2.5	44
77	N(2)-Substituted D,L-Cycloserine Derivatives: Synthesis and Evaluation as Alanine Racemase Inhibitors Journal of Antibiotics, 2003, 56, 160-168.	2.0	24
78	Mutant Analysis Shows that Alanine Racemases from Pseudomonas aeruginosa and Escherichia coli Are Dimeric. Journal of Bacteriology, 2002, 184, 4321-4325.	2.2	42
79	Characterization of the alanine racemases from two Mycobacteria. FEMS Microbiology Letters, 2001, 196, 93-98.	1.8	88
80	Characterization of the alanine racemases from two Mycobacteria. FEMS Microbiology Letters, 2001, 196, 93-98.	1.8	2
81	Characterization of the Alanine Racemases from Pseudomonas aeruginosa PAO1. Current Microbiology, 2000, 41, 290-294.	2.2	56
82	The NucE and NucD lysis proteins are not essential for secretion of the Serratia marcescens extracellular nuclease. Microbiology (United Kingdom), 1999, 145, 1209-1216.	1.8	3
83	Serratia marcescensand its extracellular nuclease. FEMS Microbiology Letters, 1998, 165, 1-13.	1.8	85
84	Serratia marcescens and its extracellular nuclease. FEMS Microbiology Letters, 1998, 165, 1-13.	1.8	2
85	Orotidine-5′-monophosphate decarboxylase fromPseudomonas aeruginosa PAO1: Cloning, overexpression, and enzyme characterization. Current Microbiology, 1994, 29, 353-359.	2.2	8
86	Correlates and Disparities of COVID-19 Vaccine Hesitancy. SSRN Electronic Journal, 0, , .	0.4	74