
Peter F Hitchcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous <i>pdgfrb+</i> cells regulate coronary vessel development and revascularization during heart regeneration. Development (Cambridge), 2022, 149, .	2.5	6
2	Disruption of miR-18a Alters Proliferation, Photoreceptor Replacement Kinetics, Inflammatory Signaling, and Microglia/Macrophage Numbers During Retinal Regeneration in Zebrafish. Molecular Neurobiology, 2022, 59, 2910-2931.	4.0	8
3	Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells, 2021, 10, 783.	4.1	23
4	Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. Journal of Neuroscience, 2020, 40, 1232-1247.	3.6	30
5	Midkine-a functions as a universal regulator of proliferation during epimorphic regeneration in adult zebrafish. PLoS ONE, 2020, 15, e0232308.	2.5	12
6	Inflammation and matrix metalloproteinase 9 (Mmpâ€9) regulate photoreceptor regeneration in adult zebrafish. Glia, 2020, 68, 1445-1465.	4.9	73
7	Reprogramming Müller Glia to Regenerate Retinal Neurons. Annual Review of Vision Science, 2020, 6, 171-193.	4.4	105
8	Tauroursodeoxycholic Acid Promotes Neuronal Survival and Proliferation of Tissue Resident Stem and Progenitor Cells in Retina of Adult Zebrafish. BPB Reports, 2020, 3, 92-96.	0.3	0
9	Whole-mount Immunohistochemistry of Adult Zebrafish Retina for Advanced Imaging. Bio-protocol, 2020, 10, e3848.	0.4	0
10	The MicroRNA, <i>miRâ€18a</i> , Regulates NeuroD and Photoreceptor Differentiation in the Retina of Zebrafish. Developmental Neurobiology, 2019, 79, 202-219.	3.0	16
11	Progranulin regulates neurogenesis in the developing vertebrate retina. Developmental Neurobiology, 2017, 77, 1114-1129.	3.0	13
12	The future of graduate and postdoctoral training in the biosciences. ELife, 2017, 6, .	6.0	47
13	Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources. Translational Vision Science and Technology, 2017, 6, 5.	2.2	13
14	The bHLH Transcription Factor NeuroD Governs Photoreceptor Genesis and Regeneration Through Delta-Notch Signaling. , 2015, 56, 7496.		45
15	Midkine-a Protein Localization in the Developing and Adult Retina of the Zebrafish and Its Function During Photoreceptor Regeneration. PLoS ONE, 2015, 10, e0121789.	2.5	25
16	The expression and function of midkine in the vertebrate retina. British Journal of Pharmacology, 2014, 171, 913-923.	5.4	23
17	The role of microglia in the neurogenesis of zebrafish retina. Biochemical and Biophysical Research Communications, 2012, 421, 214-220.	2.1	56
18	Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Neural Development, 2012, 7, 33.	2.4	41

PETER F HITCHCOCK

#	Article	IF	CITATIONS
19	Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod. PLoS ONE, 2012, 7, e29128.	2.5	34
20	Light-Induced Photoreceptor Degeneration in the Retina of the Zebrafish. Methods in Molecular Biology, 2012, 884, 247-254.	0.9	17
21	Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. Human Molecular Genetics, 2010, 19, 90-98.	2.9	76
22	The Zebrafish Galectin Drgal1-L2 Is Expressed by Proliferating Müller Glia and Photoreceptor Progenitors and Regulates the Regeneration of Rod Photoreceptors. , 2010, 51, 3244.		56
23	Midkine expression is regulated by the circadian clock in the retina of the zebrafish. Visual Neuroscience, 2009, 26, 495-501.	1.0	11
24	Cellular expression of <i>Midkineâ€a</i> and <i>Midkineâ€b</i> during retinal development and photoreceptor regeneration in zebrafish. Journal of Comparative Neurology, 2009, 514, 1-10.	1.6	42
25	Cellular expression ofmidkine-aandmidkine-bduring retinal development and photoreceptor regeneration in zebrafish. Journal of Comparative Neurology, 2009, 514, spc1-spc1.	1.6	Ο
26	Cellular expression ofmidkine-aandmidkine-bduring retinal development and photoreceptor regeneration in zebrafish. Journal of Comparative Neurology, 2009, 514, spc1-spc1.	1.6	0
27	NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mechanisms of Development, 2009, 126, 128-141.	1.7	66
28	Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. Journal of Ocular Biology, Diseases, and Informatics, 2008, 1, 73-84.	0.2	64
29	Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish. Journal of Comparative Neurology, 2007, 501, 1-12.	1.6	47
30	CTRP5 Is a Membrane-Associated and Secretory Protein in the RPE and Ciliary Body and the S163R Mutation of CTRP5 Impairs Its Secretion. , 2006, 47, 5505.		74
31	Cone Photoreceptor Function Loss-3, a Novel Mouse Model of Achromatopsia Due to a Mutation inGnat2. , 2006, 47, 5017.		143
32	Late-Onset Macular Degeneration and Long Anterior Lens Zonules Result from aCTRP5Gene Mutation. , 2005, 46, 3363.		119
33	Persistent and injury-induced neurogenesis in the vertebrate retina. Progress in Retinal and Eye Research, 2004, 23, 183-194.	15.5	171
34	The basic helix-loop-helix transcription factorneuroD is expressed in the rod lineage of the teleost retina. Journal of Comparative Neurology, 2004, 477, 108-117.	1.6	44
35	Synaptic organization of regenerated retina in the goldfish. Journal of Comparative Neurology, 2004, 343, 609-616.	1.6	34
36	The Teleost Retina as a Model for Developmental and Regeneration Biology. Zebrafish, 2004, 1, 257-271.	1.1	90

PETER F HITCHCOCK

#	Article	IF	CITATIONS
37	Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Research, 2003, 43, 927-936.	1.4	217
38	Two classes of astrocytes in the adult human and pig retina in terms of their expression of high affinity NGF receptor (TrkA). Neuroscience Letters, 2003, 337, 127-130.	2.1	23
39	Persistent neurogenesis in the teleost retina: evidence for regulation by the growth-hormone/insulin-like growth factor-I axis. Mechanisms of Development, 2002, 117, 137-149.	1.7	78
40	Putative Stem Cells and the Lineage of Rod Photoreceptors in the Mature Retina of the Goldfish. Developmental Biology, 2001, 232, 62-76.	2.0	169
41	Expression of the insulin receptor in the retina of the goldfish. Investigative Ophthalmology and Visual Science, 2001, 42, 2125-9.	3.3	15
42	Stem Cells and Regeneration in the Retina: What Fish Have Taught Us about Neurogenesis. Neuroscientist, 2000, 6, 454-464.	3.5	17
43	How the Neural Retina Regenerates. Results and Problems in Cell Differentiation, 2000, 31, 197-218.	0.7	68
44	Insulin-related growth factors stimulate proliferation of retinal progenitors in the goldfish. , 1998, 394, 386-394.		49
45	Insulin-like growth factor-I binds in the inner plexiform layer and circumferential germinal zone in the retina of the goldfish. , 1998, 394, 395-401.		22
46	Pax2 Expression and Retinal Morphogenesis in the Normal andKrdMouse. Developmental Biology, 1998, 193, 209-224.	2.0	82
47	Calcium Channel β4 (CACNB4): Human Ortholog of the Mouse Epilepsy Genelethargic. Genomics, 1998, 50, 14-22.	2.9	26
48	Tracer coupling among regenerated amacrine cells in the retina of the goldfish. Visual Neuroscience, 1997, 14, 463-472.	1.0	24
49	Vsx-1 andVsx-2: Two Chx10-like homeobox genes expressed in overlapping domains in the adult goldfish retina. Journal of Comparative Neurology, 1997, 387, 439-448.	1.6	48
50	Vsx1 and Vsx2: Two Chx10â€like homeobox genes expressed in overlapping domains in the adult goldfish retina. Journal of Comparative Neurology, 1997, 387, 439-448.	1.6	1
51	Antibodies against pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. Journal of Neurobiology, 1996, 29, 399-413.	3.6	152
52	Antibodies against pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. Journal of Neurobiology, 1996, 29, 399-413.	3.6	1
53	Regeneration of the dopamine-cell mosaic in the retina of the goldfish. Visual Neuroscience, 1994, 11, 209-217.	1.0	28
54	Restricted expression of a new paired-class homeobox gene in normal and regenerating adult goldfish retina. Journal of Comparative Neurology, 1994, 348, 596-606.	1.6	83

Peter F Hitchcock

#	Article	IF	CITATIONS
55	Plasticin, a newly identified neurofilament protein, is preferentially expressed in young retinal ganglion cells of adult goldfish. Journal of Comparative Neurology, 1994, 350, 452-462.	1.6	19
56	Kidney and Retinal Defects (Krd), a Transgene-Induced Mutation with a Deletion of Mouse Chromosome 19 That Includes the Pax2 Locus. Genomics, 1994, 23, 309-320.	2.9	154
57	Mature, growing ganglion cells acquire new synapses in the retina of the goldfish. Visual Neuroscience, 1993, 10, 219-224.	1.0	11
58	Retinal regeneration. Trends in Neurosciences, 1992, 15, 103-108.	8.6	137
59	Local regeneration in the retina of the goldfish. Journal of Neurobiology, 1992, 23, 187-203.	3.6	135
60	Dendritic arbors of large-field ganglion cells show scaled growth during expansion of the goldfish retina: a study of morphometric and electrotonic properties. Journal of Neuroscience, 1991, 11, 910-917.	3.6	28
61	Morphology and distribution of synapses onto a type of large field ganglion cell in the retina of the goldfish. Journal of Comparative Neurology, 1989, 283, 177-188.	1.6	10
62	Dendritic growth of dapi-accumulating amacrine cells in the retina of the goldfish. Developmental Brain Research, 1989, 50, 123-128.	1.7	11
63	Neuronal cell proliferation and ocular enlargement in black moor goldfish. Journal of Comparative Neurology, 1988, 276, 231-238.	1.6	27
64	Constant dendritic coverage by ganglion cells with growth of the goldfish's retina. Vision Research, 1987, 27, 17-22.	1.4	31
65	Evidence for centripetally shifting terminals on the tectum of postmetamorphicRana pipiens. Journal of Comparative Neurology, 1987, 266, 556-564.	1.6	13
66	The myopic eye of the black moor goldfish. Vision Research, 1986, 26, 1831-1833.	1.4	20
67	Retinal ganglion cells in goldfish: a qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience, 1986, 6, 1037-1050.	3.6	124
68	Genesis of neurons in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 1984, 228, 186-199.	1.6	52
69	Genesis of morphologically identified neurons in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 1984, 228, 200-209.	1.6	20
70	Morphology of C-laminae neurons in the dorsal lateral geniculate nucleus of the cat: A Golgi impregnation study. Journal of Comparative Neurology, 1983, 220, 137-146.	1.6	17
71	Tritiated thymidine experiments in the cat: a description of techniques and experiments to define the time-course of radioactive thymidine availability. Journal of Neuroscience Methods, 1983, 8, 139-147.	2.5	29
72	A method for combining Golgi impregnation procedures and light microscopic autoradiography. Journal of Neuroscience Methods, 1983, 8, 149-154.	2.5	6

#	Article	lF	CITATIONS
73	Prenatal development of the human lateral geniculate nucleus. Journal of Comparative Neurology, 1980, 194, 395-411.	1.6	41
74	Ocular dominance columns: evidence for their presence in humans. Brain Research, 1980, 182, 176-179.	2.2	80